МИНОБРНАУКИ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ КАФЕДРА ПРИКЛАДНОЙ ФИЗИКИ

Утверждено: на заседании кафедры протокол № 10 от «30» мая 2019 г.

Согласовано: Председатель УМК ФТИ

/ Балапанов М.Х.

Зав. кафедро Турб / Ковалева Л.А.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

дисциплина Современные проблемы гидродинамики

(наименование дисциплины)

Б1.В.1.ДВ.08.02 вариативная часть, дисциплина по выбору_

(Цикл дисциплины и его часть (базовая, вариативная, дисциплина по выбору))

программа бакалавриата

Направление подготовки (специальность) 03.03.01 Прикладные математика и физика (код и наименование направления подготовки (специальности))

Направленность (профиль) подготовки Моделирование физических процессов и технологий (наименование направленности (профиля) подготовки)

Квалификация	
Бакалавр	
 (квалификация)	

Разработчик (составитель)	A
заведующий кафедрой прикладной физики,	Right-
доктор технических наук, профессор.	/ Ковалева Л.А.
(должность, ученая степень, ученое звание)	(подпись, Фамилия И.О.)

Для приема: 2019 г.

Уфа 2019 г.

Составитель / составители: Ковале	ева Л.А.
Рабочая программа дисциплины аз мая 2019 г. № 10	ктуализирована на заседании кафедры протокол от «30»
	Tufut-
Заведующий кафедрой	/ Ковалева Л.А.

Список документов и материалов

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с	
планируемыми результатами освоения образовательной программы	
2. Цель и место дисциплины в структуре образовательной программы	
3. Содержание рабочей программы (объем дисциплины, типы и виды учебных	
занятий, учебно-методическое обеспечение самостоятельной работы	
обучающихся)	
4. Фонд оценочных средств по дисциплине	
4.1. Перечень компетенций с указанием этапов их формирования в процессе	
освоения образовательной программы. Описание показателей и критериев	
оценивания компетенций на различных этапах их формирования, описание шкал	
оценивания	
4.2. Типовые контрольные задания или иные материалы, необходимые для	
оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы	
формирования компетенций в процессе освоения образовательной программы.	
Методические материалы, определяющие процедуры оценивания знаний,	
умений, навыков и опыта деятельности, характеризующих этапы формирования	
компетенций	
4.3. Рейтинг-план дисциплины (при необходимости)	
5. Учебно-методическое и информационное обеспечение дисциплины	
5.1. Перечень основной и дополнительной учебной литературы, необходимой для	
освоения дисциплины	
5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет»	
и программного обеспечения, необходимых для освоения дисциплины	
6. Материально-техническая база, необходимая для осуществления	
образовательного процесса по дисциплине	

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы (с ориентацией на карты компетенций)

В результате освоения образовательной программы обучающийся должен овладеть следующими результатами обучения по дисциплине:

ОПК-3 способностью понимать ключевые аспекты и концепции в области их специализации;

ПК-1 способностью планировать и проводить научные эксперименты (в избранной предметной области) и (или) теоретические (аналитические и имитационные) исследования

Табл. 1

	Результаты обучения	Формируема	Примеча
		Я	ние
		компетенция	
		(с указанием	
		кода)	
Знания	1. Современные представления о процессах и	ОПК-3	
	явлениях в области кинематики и динамики		
	жидкостей и газов, гидромеханики.		
	2.Основные принципы проведения	ПК - 1	
	экспериментальных и теоретических исследований		
	в области гидродинамики		
Умения	1. Понимать ключевые аспекты и концепции в	ОПК - 3	
	современном развитии гидродинамики		
	2.Планировать научные исследования в области	ПК - 1	
	гидроодинамики		
	1. Элементами теоретического анализа и возможности	ОПК – 3	
Владения	его приложения в области гидродинамики		
(навыки /	2.Методами теоретического и экспериментального	ПК-1	
деятельн	исследования в гидрогазодинамике		
ости)			

2. Цель и место дисциплины в структуре образовательной программы

Дисциплина «Современные проблемы гидродинамики» относится к вариативной
части.
Дисциплина изучается на 4 <i>курсе(ах)</i> в 8 семест <i>ре(ах)</i> .
Цели изучения дисциплины:
Целью учебной дисциплины является формирование у студентов способно

Целью учебной дисциплины является формирование у студентов способности способностью понимать ключевые аспекты и концепции в области современной гидродинамики; способностью планировать и проводить научные эксперименты и теоретические исследования в данной области.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин: «Молекулярная физика», «Геология», «Петрофизика», «Физика нефтегазового пласта», «Подземная гидродинамика», «Теория тепломассопереноса».

Знание основ, полученных при изучении дисциплины «Современные проблемы гидродинамики», необходимо для выполнения и успешной защиты выпускной бакалаврской работы.

3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

Содержание рабочей программы представлено в Приложении № 1.

4. Фонд оценочных средств по дисциплине

4.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Код и формулировка компетенции:

ОПК-3 Способностью понимать ключевые аспекты и концепции в области их специализации

Этап	Планируемые	Критерии оценивания	результатов обучения	
(уровень)	результаты обучения			
освоения	(показатели достижения	Не зачтено	Зачтено	
компетенци	заданного уровня	пе зачтено	Зачтено	
И	освоения компетенций)			
Первый	Знать: Современные	Отсутствие знаний или	Сформированные	
этап	представления о	фрагментарные знания	(возможно неполные)	
(уровень)	процессах и явлениях в	о современных	знания о современных	
	области кинематики и	представлениях о	представлениях о	
	динамики жидкостей и	процессах и явлениях в	процессах и явлениях в	
	газов, гидромеханики.	области кинематики и	области кинематики и	
		динамики жидкостей и	динамики жидкостей и	
		газов, гидромеханики.	газов, гидромеханики.	
Второй	Уметь: Понимать	Отсутствие умений об	В целом успешное	
этап	ключевые аспекты и	использовании	умение использовать	
(уровень)	концепции в	современных	современные	
	современном развитии	представлений о	представления о	
	гидродинамики	процессах и явлениях в	процессах и явлениях в	
		области кинематики и	области кинематики и	
		динамики жидкостей и	динамики жидкостей и	
		газов, гидромеханики.	газов, гидромеханики.	
Третий	Владеть: Элементами	Отсутствие владения о	В целом успешное	
этап	теоретического анализа и	современными	владение	
(уровень)	возможности его	представлениями о	современными	
	приложения в области	процессах и явлениях в	представлениями о	
	газодинамики	области кинематики и	процессах и явлениях в	
		динамики жидкостей и	области кинематики и	

	газов, гидромеханики.	динамики жидкостей и
		газов, гидромеханики.

<u>ПК-1</u> способностью планировать и проводить научные эксперименты (в избранной предметной области) и (или) теоретические (аналитические и имитационные) исследования

Этап	Планируемые результаты	Критерии оценивания ј	результатов обучения
(уровень)	обучения		
освоения	(показатели достижения	Не зачтено	Зачтено
компетенци	заданного уровня	пе зачтено	Зачтено
И	освоения компетенций)		
Первый	Знать: Основные	Отсутствие знаний об	Сформированные
этап	принципы проведения	основных принципах	знания об основных
(уровень)	экспериментальных и	проведения	принципах
	теоретических	экспериментальных и	проведения
	исследований в области	теоретических	экспериментальных и
	гидродинамики	исследований в области	теоретических
		гидродинамики	исследований в
			области
			гидродинамики
Второй	Уметь: Планировать	Отсутствие умений	В целом успешное
этап	научные исследования в	проведения	умение проведения
(уровень)	области гидродинамики	экспериментальных и	экспериментальных и
		теоретических	теоретических
		исследований в области	исследований в
		гидродинамики	области
			гидродинамики
Третий	Владеть: Методами	Отсутствие владения	В целом успешное
этап	теоретического и	методами проведения	владение методами
(уровень)	эксперимен-тального	экспериментальных и	проведения
	исследования в	теоретических	экспериментальных и
	гидрогазодинамике	исследований в области	теоретических
		гидродинамики	исследований в
			области
			гидродинамики

4.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций

Резуль	статы обучения	Компетенция	Оценочные
	1		средства
1-й этап	1. Современные представления о процессах	ОПК-3	Реферат, презентация,
Знания	и явлениях в области		дискуссия
	кинематики и динамики		
	жидкостей и газов,		
	гидромеханики.		
	2.Основные принципы	ПК - 1	Реферат,
	проведения экспериментальных и		презентация, дискуссия
	теоретических		дискуссия
	исследований в области		
	гидродинамики		
2-й этап	2. Понимать ключевые	ОПК - 3	Реферат,
**	аспекты и концепции в		презентация, дискуссия
Умения	современном развитии		дискуссия
	гидродинамики		
	2.Планировать научные	ПК - 1	Реферат,
	исследования в области		презентация,
	гидродинамики		дискуссия
	1.Элементами теоретического	ОПК – 3	Реферат,
3-й этап	анализа и возможности его		презентация, дискуссия
	приложения в области		дискуссия
Владения (навыки / опыт деятельности)	гидродинамики		
	2.Методами теоретического	ПК-1	Реферат,
	и экспериментального		презентация,
	исследования в		дискуссия
	гидрогазодинамике		

4.3. Рейтинг-план дисциплины

Рейтинг-план дисциплины представлен в приложении 2.

Далее

Описываются все оценочные средства, указанные в таблице выше, и методика их оценивания. При наличии экзамена приложить образцы билетов и методику оценивания на экзамене (от 0 до 30 при использовании модульно-рейтинговой системы и описание для тех программ, где рейтинговая система не используется).

Экзаменационные билеты

Зачет проводится в виде итоговой дискуссии.

Перечень дискуссионных тем для круглого стола

по дисциплине Современные проблемы газодинамики (наименование дисциплины)

- 1 Методы математического моделирования в динамике дисперсных систем
- 2 Экспериментальные методы изучения влияния внешних физических полей на нефтяные дисперсные системы

Критерии оценки (в баллах):

- 10 баллов выставляется студенту, если он проявил способность анализировать полученные в ходе научно-исследовательской работы данные и делать научные выводы;
- *5 баллов выставляется студенту, если он проявил способность* анализировать полученные в ходе научно-исследовательской работы данные, но не умеет делать научные выводы;
- 0 баллов выставляется студенту, если он проявил способность анализировать полученные в ходе научно-исследовательской работы данные и делать научные выводы;

Темы докладов

по дисциплине Современные проблемы гидродинамики (наименование дисциплины)

- 1. Моделирование расслоения дисперсных систем
- 2. Влияние электромагнитного поля на реологические свойства нефтей
- 3. Экспериментальное и численное изучение процесса образования колец Лизеганга
- 4. Экспериментальное исследование методов интенсификации добычи нефти для условий карбонатных месторождений
- 5. Моделирование термоупругих напряжений при нагреве насыщенной пористой среды электромагнитным полем
- 6. Воздействие акустических полей на пузырек в жидкости около твёрдой поверхности
- 7. Воздействие СВЧ электромагнитного поля на водонефтяные эмульсии
- 8. Движение пузырьков в системе микроканалов

Критерии оценки (в баллах):

- 25-30 баллов выставляется студенту, если раскрыта суть рассматриваемого аспекта и причина его рассмотрения; описание существующих для данного аспекта проблем и предлагаемые пути их решения; доклад имеет презентацию; соблюден регламент при представлении доклада; представление, а не чтение материала; использованы нормативные, монографические и периодические источники литературы; четкость дикции; правильность и своевременность ответов на вопросы; оформление доклада в соответствии с требованиями сдача его преподавателю;
- -17-24 баллов выставляется студенту, если не выполнены любые два из вышеуказанных условий:
- 10-16 баллов выставляется студенту, если не выполнены любые четыре из вышеуказанных условий;
- 1-10 баллов выставляется студенту, если не выполнены любых шесть из указанных условий

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная и Дополнительная литература:

- 1. Моделирование турбулентных течений: Учебное пособие / И.А. Белов, С.А. Исаев, Балт. гос. техн. ун-т. СПб., 2001. 108 с.
- 2. Турбулентность: модели и подходы. Курс лекций. Часть І. / П.Г. Фрик, Перм. гос. техн. ун-т. Пермь, 1998. 108 с.
- 3. Зиганшина А.С. Макрокинетика ионно-координационной полимеризации бутадиена на титановой каталитической системе при формировании реакционной смеси в турбулентных потоках Уфа 2017 136 с.
- 4. Fast liquid-phase processes in turbulent flows / K.S. Minsker [et al.]. Koninklijke Brill NV, Leiden, The Netherlands.: VSP. 2004. 179 p.
- 5. И.И Кагарманов. Добыча нефти и газа. Томск, Центр профессиональной переподготовки специалистов нефтегазового дела ТПУ, 2010. с.6-22.
- 6. Камартдинов М.Р., Шевелев П.В., Современный анализ данных по добыче нефти и газа. Томск, Центр профессиональной переподготовки специалистов нефтегазового дела ТПУ, 2009. 177 с.
- 7. Hawkins M.F. A Note on the Skin Effect // J.Petrol. Technol.; Trans. AIME, 207, Dec. 1956. p.65, 356 357.
- 8. Aram Amin Well Test Analysis of Infrequent Flow Behaviour of Fractured Wells in Oil and Gas Reservoirs: A Dissertation Submitted in Fulfilment of the Requirements for the Degree of Doctor of Philosophy of the University of London and the Diploma of Imperial College London, 2012, 182 p.
- 9. Gringarten, A.C. Well Test Analysis Notes// MSc Petroleum Engineering Course Note, Imperial College London, 2012, 182 p.
- 10. Владимиров В.С. Уравнения математической конструкции Учебник для вузов. М. ФИЗМАТЛИТ. 2004.- 400 с.
- 11. Эрлагер. Гидродинамические исследования скважин/ Р.Эрлагер, А.В.Щебетова. Москва .2004.-469 с.
- 12. Карнаухов М.Л., Казанцев П.Ю., Пьянкова Е.М. Моделирование движения жидкости к скважине при наличие трещины, полученной при гидроразрыве пласта, 2003, Тюмень.
- 13. Муфазалов Р.Ш. Гидромеханика добычи нефти: Учебное пособие для вузов. -М.: Изд-во «Горная книга», 2005, 328с.
- 14. Devpractice, «Jupyter Notebook, Python: уроки (1 издание) ». devpractice.ru, 2017.
- 15. Басниев К.С., Дмитриев Н.М., Розенберг Г.Д. «Нефтегазовая гидромеханика». Москва, Ижевск, 2005.-с. 544.
- 16. Басниев К.С., Кочина И.Н., Максимов В.М., «Подземная гидромеханика». Москва,1993. с. 414.
- 17. Половинкин Е.С. «Теория функции комплексного переменного: учебник. Издание третье, исправленное и дополненное». 2014. с. 253.
- 18. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы 4-е изд. М.: БИНОМ. Лаборатория знаний, 2006. 636 с.

- 19. Бухмастова С.В., Мусин А.А., Ковалева Л.А. Математическая модель высокочастотного электромагнитного нагрева резервуара с нефтяным шламом // V международная конференция «NANOTECHOILGAS-2016» Москва. 2016. С. 341-346.
- 20. Ковалева Л. А., Киреев В. Н., Мусин А. А. Численное моделирование теплового воздействия на высоковязкие углеводородные системы // Труды Института механики Уфимского научного центра РАН. Вып. 5 / Под ред. М. А. Ильгамова, С. Ф. Урманчеева, С. В. Хабирова. Уфа: Гилем. 2007. С. 221-226.
- 21. Ковалева Л. А., Киреев В. Н., Мусин А. А., Насыров Н. М. Экспериментальное и математическое моделирование теплового воздействия на высоковязкие углеводородные системы // Физика и физическое образование: достижения и перспективы развития. Бишкек: КНУ им. Ж. Баласагына. 2006. С. 64.
- 22. Ковалева Л. А., Мусин А. А., Зиннатуллин Р. Р. Физическое и математическое моделирование высокочастотного электромагнитного воздействия на углеводородные среды // Прикладная механика и техническая физика. 2015. Т. 56. № 3. С. 7-13.
- 23. Кононов О. В. Анализ и классификация существующих способов борьбы с отложениями в нефтяных емкостях // История науки и техники. 2010. № 6. С.60-68.
- 24. Мусин А. А. Исследование конвективных течений в углеводородной жидкости при электромагнитном нагреве: Дис. канд. физ.- мат. наук Уфа: БашГУ, 2010. 135 с.
- 25. Саяхов Ф. Л., Суфьянов Р. Р. Использование энергии высокочастотного электромагнитного поля для переработки нефтяных шламов // Сборник статей научной конференции по научно техническим программам минобразования России. Уфа. 1999. С. 127-130.
- 26. Эйвазова А. Г. Нефтяной шлам и возможные области его использования // XVIII Международная научно-практическая конференция «Современные техника и технологии». Томск. 2012. С. 147-148.
- 27. Appleton T.J., ColderR.I., KingmanS.W., LowndesI.S., ReadA.G. Microwave technology for energy efficient processing of waste // Applied Energy. 2005. P. 85–113.
- 28. Нигматулин Р.И., Саяхов Ф.Л., Ковалева Л.А. Перекрестные явления переноса в дисперсных системах, взаимодействующих с высокочастотным электромагнитным полем // РАН. 2001. Т. 377, Вып. 3. С. 340-343.
- 29. Ковалева Л.А., Зиннатуллин Р.Р., Миннигалимов Р. З. Исследование разрушения водонефтяных эмульсий высокочастотным электромагнитным полем. //Труды института механики РАН. Уфа, 2008.
- 30. Fatkhullina Y.I., Musin A.A., Kovaleva L.A., Akhatov I.S. Mathematical Modeling of a Water-in-Oil Emulsion Droplet Behavior under the Microwave Impact // Journal of Physics Conference Series. 2015. № 574 (1). P.
- 31. Ковалева Л. А. и др. Эволюция микроструктуры водонефтяных эмульсий в высокочастотных и сверхвысокочастотных электромагнитных полях //Теплофизика высоких температур. -2013. Т. 51. №. 6. С. 952-955; Зиннатуллин Р. Р., Муллаянов А. И., Амекачев Р. М. Исследование особенностей коагуляции и коалесценции эмульсионных капель в электромагнитном поле //Вестник Башкирского университета. -2015. Т. 20. №. 31
- 32. Кузьмин В.И., Гадзаов А.Ф., Тытик Д.Л., Бусев С.А., Ревина А.А., Высоцкий В.В. Кинетика образования колец Лизеганга. // Журнал структурной химии 2013, Т.54, приложение №2 С.368-382.
- 33. Малюков В.П. Образование колец Лизеганга в каменной соли с наночастицами. // Горный информационно-аналитический бюллетень 2016, №10 С.242-248.
- 34. Печенкин А.А. Историческая эпистемология науки и техники. // Философия науки и техники 2016. Т. 21. № 1. _C. 118–131.

- 35. Полежаев А.А. Теория структур Лизеганга. // Математическое моделирование и вычислительный эксперимент 2002, МКО-10 С. 307-317.
- 36. Istvan Lagzi, Andras Volford, Andras Buki Effect of geometry on the time law of Liesegang patterning. // Chemical Physics Letters 2004_P. 97–101.
- 37. Красновский С.С. Исследование взаимодействия электромагнитных полей ВЧ и СВЧ с горными породами для разработки способов и средств их разрушения, 1999
- 38. Менжулин М.Г., Соколова Н.В., Шишов А.Н., Хоминский В.А. Исследование процессов трещинообразования в скальных породах под действием электромагнитных полей // Труды международного научного Симпозиума «Неделя горняка-98», г. Москва, НИТУ МИСиС, 2-6 февраля 1998 г.-С. 164-165;
- 39. Лопатин В.В., Мартемьянов С.М., Бухаркин А.А. Подземная пиролитическая конверсия сланцев с помощью электрофизического нагрева пласта.
- 40. Ю. В. Марапулец, А. О. Щербина. Методы исследования пространственной анизотропии геоакустической эмиссии.[Электронный ресурс] //Техническая акустика. Элект. журн. –2008. 14.Режим доступа: http://ejta.org, свободный.
- 41. Г.А. Максимов, А. В. Радченко. Моделирование интенсификации нефтедобычи при акустическом воздействии на пласт из скважины. [Электронный ресурс] //Техническая акустика. Элект. журн. 2003. 10. Режим доступа: http://ejta.org, свободный.
- 42. Ю.И. Горбачев, Н.И. Иванова, А.А. Никитин, Т.В. Колесников, Э.И.Орентлихерман /Акустические методы повышения нефтеотдачи пластов и интенсификации добычи нефти//Нефтяное хозяйство: М. :Нефтяное хозяйство— 2002. 5.
- 43. Л. Ландау, Е.Лифшиц / Механика сплошных сред. Гидродинамика и теория упругости.-М., 1944.-623 с.
- 44. Carlos Perez-Arancibia, Eduardo Godoy, Mario Duran. Modeling and simulation of an acoustic well stimulation method. Department of Mathematics, Massachusetts Institute of Technology, 2017.
- 45. Губайдуллин А.А., Губкин А.С. Исследование динамики пузырькового кластера // Вестник Тюменского государственного университета. 2013. № 7. Р. 91–97.
- 46. Губайдуллин А.А., Губкин А.С. Поведение пузырьков в кластере при акустическом воздействии // Современная наука: идеи, исследования, результаты, технологии. 2013. № 1. Р. 363–367.
- 47. Коновалова С.И. Трансляционные эффекты и структурообразование при акустической кавитации // Диссертация на соискание ученой степени к. ф.-м. н. Уфа. 2006. 120 р.
- 48. Маргулис И.М., Маргулис М.А. Динамика взаимодействия пузырьков в кавитационном облаке // Журнал физической химии. 2004. Т. 78, № 7. Р. 1326–1337.
- 49. D. F. Gaitan, R. A. Tessien, R. A. Hiller, J. Gutierrez, C. Scott, H. Tardif, B. Callahan, T. J. Matula, L. A. Crum, R. G. Holt, C. C. Church, and J. L. Raymond. Transient cavitation in high-quality-factor resonators at high static pressures //J. Acoust. Soc. Am. 2010. Vol. 127 P. 3456–3465.
- 50. Doinikov A.A. Mathematical model for collective bubble dynamics in strong ultrasound fields // J. Acoust. Soc. Am. 2004. Vol. 116, No. 2. P. 821–827.
- 51. Lauterborn W., Kurz T. Physics of bubble oscillations // Rep. Prog. Phys. 2010. Vol. 73. 106501. P. 88.
- 52. Pelekasis N.A., Gaki A., Doinikov A. and Tsamopoulos J.A. Secondary Bjerknes forces between two bubbles and the phenomenon of acoustic streamers // J. Fluid Mech. 2004. Vol. 500. P. 313–347.
- 53. Prabowo F., Ohl C.-D. Surface oscillation and jetting from surface attached acoustic driven bubbles // Ultrasonics Sonochemistry. 2011. Vol. 18. P. 431–435.

- 54. R. Mettin, P.E. Frommhold, X. Xi, F. Cegla, H. Okorn-Schmidt, A. Lippert, F. Holsteyns. Acoustic Bubbles: Control and Interaction with Particles Adhered to a Solid Substrate // Ultra Clean Processing of Semiconductor Surfaces XI Solid State Phenomena, Switzerland. 2013. Vol. 195. P. 161–164.
- 55. Reddy A.J. and Szeri A.J. Shape stability of unsteadily translating bubbles // Phys. Fluids. 2002. Vol. 14, No. 7. P. 2216–2224.
- 56. Xi X., Cegla F., Mettin R., Holsteyns F., Lippert A. Collective bubble dynamics near a surface in a weak acoustic standing wave field// J. Acoust. Soc. Am. 2012. Vol. 132. P. 37–47.

5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины

- 1. Федеральный портал «Российское образование» http://www.edu.ru/
- 2. Федеральное хранилище «Единая коллекция цифровых образовательных ресурсов» http://school-collection.edu.ru/
- 3. Российский портал «Открытого образования» http://www.openet.edu.ru

6.Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине.

Наименование специализированных аудиторий, кабинетов, лабораторий	Вид занятий	Наименование оборудования, программного обеспечения
1	2	3
Учебная аудитория № 218 (физмат корпус-учебное).	Семинар	Наименование оборудования Учебная мебель, учебно-наглядные пособия, кондиционер (сплит-система) Наіег HSU- 24HEK203/R2- HSU-24HUN03/R2, экран настенный с электроприводом Classic Lyra 203x203 (Е195x195/1 МW-L8/W), ноутбук НРМіпі 110-3609ег Atom N455/2/250/WiFi/BT/Win7St/10.1"/1.29кг, проектор ВепQ МХ520 (9H.J6V77. 13E/9H.J6V77.13F). Программное обеспечение 1. Windows 8 Russian. OLP NL OLP NL AcademicEdition. Договор №104 от 17.06.2013 г. Лицензии бессрочные. №104 от 17.06.2013 г. Лицензии бессрочные. 2. Windows Professional 8 Russian. OLP NL AcademicEdition. Договор №104 от 17.06.2013 г. Лицензии бессрочные. 3. Місгозоft Office Standart 2013 Russian. OLP NL OLP NL AcademicEdition. Договор №104 от 17.06.2013 г. Лицензии бессрочные. 3. Місгозоft Office Standart 2013 Russian. OLP NL OLP NL AcademicEdition. Договор №114 от 12.11.2014 г. Лицензии бессрочные.
Читальный зал №2, аудитория № 406 компьютерный класс (физмат корпус-учебное), система централизованного тестирования БашГУ	Самостоятельная работа	Наименование оборудования

МИНОБРНАУКИ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины «Современные проблемы газодинамики» на 8 семестр
(наименование дисциплины)
<u></u> очная
форма обучения

Вид работы	Объем	
Бид рассты	дисциплины	
Общая трудоемкость дисциплины (ЗЕТ / часов)	2/72	
Учебных часов на контактную работу с преподавателем:	22,7	
лекций	-	
практических/ семинарских	22	
лабораторных	-	
других (групповая, индивидуальная консультация и иные виды		
учебной деятельности, предусматривающие работу обучающихся		
с преподавателем) (ФКР)	0,2	
Учебных часов на самостоятельную работу обучающихся (СР)	49,8	
Учебных часов на подготовку к		
экзамену/зачету/дифференцированному зачету (Контроль)	-	

Форма контроля:		
зачет	8	семестр

№ п/ п	Тема и содержание	Форма изучения материалов (лекции, практические занятия, семинарские занятия, лабораторные работы, самостоятельная работа)	Кол-во часов аудитор. работы	Основная и дополнительна я литература, рекомендуемая студентам	Задания по самостоятель ной работе студентов с указанием литературы, номеров задач	Количе-ство часов самостоят. работы	Форма контроля самостоятельной работы студентов (коллоквиумы, контрольные работы, компьютерные тесты и т.п.)		
1	2	3	4	5	6	7	8		
	Модуль 1								
1.	Вопросы гидрогазодинамики вязкой жидкости	Практика	2	1-3	4	6	Устный опрос.		
2.	Моделирование нестационарных фильтрационных потоков	Практика	4	5-7	8,9	6	Устный опрос		
3.	Гидрогазодинамика неоднородных коллекторов	Практика	2	10,11	12	6	Устный опрос		
4.	Гидромеханика нефтяных резервуаров	Практика	2	15-17	14	6,8	Устный опрос		
	Итого часов		10			24,3			
	Модуль 2								

5.	Гидрогазодинамика водонефтяных эмульсий во внешних физических полях	Практика	4	18-24	25-31	6	Устный опрос
6.	Изучение процесса образование колец Лизеганга	Практика	2	32-34	35-36	6	Устный опрос
7.	Воздействие электромагнитного поля на нефтематеринские породы	Практика	2	37-39			
8.	Гидрогазодинамика жидкостей и газов в акустическом поле	Практика	2	40-50	51-56	6	Устный опрос
	Всего часов:		22			49,8	

Рейтинг-план дисциплины

«Современный проблемы гидродинамики» (название дисциплины согласно рабочему учебному плану)

Направление 03.03.01- Прикладные математика и физика

Курс 4, семестр 8

Виды учебной деятельности	Балл за	Число	Баллы				
студентов	Конкрет	заданий	Минимальны	Максимальны			
	ное	за	й	й			
	задание	семестр					
Модуль 1.							
Текущий контроль							
1. Аудиторная работа:							
А) 20 баллов – 1 выступление	20	1	0	20			
(презентация - 10, доклад - 10)							
Презентация	10	1	0	10			
Рубежный контроль							
Дискуссия	1	10	0	10			
Модуль 2.							
Текущий контроль							
1. Аудиторная работа:							
А) 20 баллов – 1 выступление	20	1	0	20			
(презентация - 10, доклад - 10)							
Презентация	10	1	0	10			
Рубежный контроль							
Дискуссия	1	10	0	10			
Поощрительные баллы							
Качество выполнения СРС				10			
Посещаемость (баллы вычитаются из общей суммы набранных баллов)							
1. Посещение семинарских занятий			0	-10			
Итоговый контроль							
1. Зачет				20			