МИНОБРНАУКИ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНЖЕНЕРНЫЙ ФАКУЛЬТЕТ

Утверждено:

на заседании кафедры ТМО

протокол № 13/1 от «15» апреля 2020 г.

И.о. зав. кафедрой

/ Сантов Р.И.

∠+Мельникова А.Я.

Согласовано:

Председатель УМК

Инженерного факультета

СОГЛАСОВАНО:

Зам. гл. директора

АО «Красный пролетарий»

исеци / М.И. Шарипов

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ

Современные методы оптимизации тепломассообменных процессов

Дисциплина по выбору вариативной части – Б1.В.ДВ.02.02

Программа академической магистратуры

Направление подготовки 15.04.02 - Технологические машины и оборудование

Направленность (профиль) подготовки «Инжиниринг технологического оборудования химических и нефтехимических производств»

> Квалификация магистр

Разработчик (составитель) доцент, к.т.н.

/ Абдеев Э.Р.

Для приема: 2020 г.

Уфа 2020 г.

Разработчики (составитель): , доцент, к.т.н. ст. преподаватель Шавалеев Э.И	. Абдеев Э.Р.,
Рабочая программа дисциплины «Теория утверждена на заседании кафедры ТМО п	
2020 г.	(III)
И.о.заведующего кафедрой	/ Саитов Р.И./
Дополнения и изменения, внесенны утверждены на заседании кафедры: обно литературы протокол № 1 от «16» сентябр	-
И.о.зав. кафедрой	/ Юминов И.П./

Список документов и материалов

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируеми	ыми
результатами освоения образовательной программы	4
2. Цель и место дисциплины в структуре образовательной программы	7
3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учеб	Но-
методическое обеспечение самостоятельной работы обучающихся)	7
4. Фонд оценочных средств по дисциплине	8
4.1 Перечень компетенций с указанием этапов их формирования в процессе освоения	
образовательной программы. Описание показателей и критериев оценивания компетенций н	ıa
различных этапах их формирования, описание шкал оценивания	
4.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний,	,
умений, навыков и опыта деятельности, характеризующих этапы формирования компетенци	
процессе освоения образовательной программы. Методические материалы, определяющие	
процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих эт	тапы
формирования компетенций	12
4.2.1 Образцы заданий для проведения контрольной работы	16
4.2.2 Контрольные вопросы для экзамена	18
4.2.3 Примеры экзаменационного билета	
4.2.4 Образцы заданий для проведения текущего контроля	19
4.2.5 Образцы тестов для проведения рубежного контроля	
5. Учебно-методическое и информационное обеспечение дисциплины	27
5.1 . Перечень основной и дополнительной учебной литературы, необходимой для освоен	КИ
дисциплины	27
5.2 Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и	
программного обеспечения, необходимых для освоения дисциплины	27
6. Материально-техническая база, необходимая для осуществления образовательного процес	
по дисциплине	28
Приложения	30

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения образовательной программы обучающийся должен овладеть следующими результатами обучения по дисциплине

Результаты обучения		Формируемая компетенция (с указанием кода)	Примечание
Знать	-методы разработки физических и математических моделей теплотехнических процессов; -методику расчета нормативов расхода материалов, инструментов, энергии на выполнение технологических операций изготовления машиностроительных изделий средней сложности с применением, САРР-систем.	ПК-20 способностью разрабатывать физические и математические модели исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере, разрабатывать методики и организовывать проведение экспериментов с анализом их результатов	
	Публикации по тематике исследования.	ПК-21 способностью подготавливать научнотехнические отчеты, обзоры, публикации по результатам выполненных исследований	
Уметь	Использовать методы разработки физических и математических моделей теплотехнических процессов; использовать САРР-системы для расчета норм расхода материалов, инструментов, энергии в технологических операциях изготовления машиностроительных изделий средней сложности.	ПК-20 способностью разрабатывать физические и математические модели исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере, разрабатывать методики и организовывать проведение экспериментов с анализом их результатов	
	Подготавливать научнотехнические отчеты, обзоры, публикации по результатам выполненных исследований.	ПК-21 способностью подготавливать научнотехнические отчеты, обзоры, публикации по результатам выполненных исследований	
Владеть (навыки / опыт деятельности)	навыками физического и математического моделирования теплотехнических процессов;	ПК-20 способностью разрабатывать физические и математические модели исследуемых машин,	

навыками расчета с	приводов, систем,
применением САРР-систем	процессов, явлений и
норм времени, материалов,	объектов, относящихся к
инструментов, энергии на	профессиональной сфере,
технологические операции	разрабатывать методики и
изготовления	организовывать
машиностроительных изделий	проведение экспериментов
средней сложности.	с анализом их результатов
навыками подготовки научно-	ПК-21 способностью
технических отчетов, обзоров,	подготавливать научно-
публикаций по результатам	технические отчеты,
выполненных исследований	обзоры, публикации по
	результатам выполненных
	исследований

2. Цель и место дисциплины в структуре образовательной программы

учебной дисциплины «Современные методы оптимизации тепломассообменных процессов» является овладение теорией современных расчёта тепломассообменных процессов; приобретение численных методов практических навыков составления программ моделирования тепломассообмена; практическое освоение современных методов оптимизации; формирование навыков применения энергосберегающих принципов схем организации тепломассообменных процессов, аппаратов и установок при их проектировании или энергетической модернизации.

Дисциплина «Современные методы оптимизации тепломассообменных процессов» относится к вариативной части, к дисциплинам по выбору.

Дисциплина изучается на 2 курсе в 3 семестре у очной формы обучения, на 2 курсе во 2, 3 сессии у заочной формы обучения.

Профессиональные компетенции (ПК):

ПК-20: Способность разрабатывать физические и математические модели исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере, разрабатывать методики и организовывать проведение экспериментов с анализом их результатов

ПК-21: способность подготавливать научно-технические отчеты, обзоры, публикации по результатам выполненных исследований

Связь курса с другими дисциплинами:

Для изучения данной учебной дисциплины <u>необходимы</u> следующие знания, умения и навыки, формируемые предшествующими дисциплинами:

Теоретические основы теплотехники и теплопередачи

3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

Содержание рабочей программы представлено в Приложении № 1.

4. Фонд оценочных средств по дисциплине

4.1 Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

ПК-20 способностью разрабатывать физические и математические модели исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере, разрабатывать методики и организовывать проведение экспериментов с анализом их результатов

Этап (уровень)	Планируемые	K	ритерии оценивания рез	ультатов обучения	
освоения компетенции	результаты обучения (показатели достижения заданного уровня освоения компетенций)	2 («Не удовлетворительно»)	3 («Удовлетворительно »)	4 («Хорошо»)	5 («Отлично»)
Первый этап (уровень)	Знать: методы разработки физических и математических моделей теплотехнических процессов, методику расчета нормативов расхода материалов, инструментов, энергии на выполнение технологических операций	Не знает: -методы разработки физических и математических моделей теплотехнических процессов, методику расчета нормативов расхода материалов, инструментов, энергии на выполнение технологических операций	Знает фрагментарно: -методы разработки физических и математических моделей теплотехнических процессов, методику расчета нормативов расхода материалов, инструментов, энергии на выполнение технологических операций	В основном знает: -методы разработки физических и математических моделей теплотехнических процессов, методику расчета нормативов расхода материалов, инструментов, энергии на выполнение технологических операций	Уверенно знает: -методы разработки физических и математических моделей теплотехнических процессов, методику расчета нормативов расхода материалов, инструментов, энергии на выполнение технологических операций

Второй этап	изготовления машиностроитель ных изделий средней сложности с применением, САРР-систем.	Не умеет:	Умеет частично:	Достаточно хорошо	Уверенно умеет:
(уровень)	- использовать методы разработки физических и математических моделей теплотехнических процессов, использовать САРР-системы для расчета норм расхода материалов, инструментов, энергии в технологических операциях изготовления машиностроитель ных изделий средней сложности.	- использовать методы разработки физических и математических моделей теплотехнических процессов, использовать САРР-системы для расчета норм расхода материалов, инструментов, энергии в технологических операциях изготовления машиностроительных изделий средней сложности.	- использовать методы разработки физических и математических моделей теплотехнических процессов, использовать САРР-системы для расчета норм расхода материалов, инструментов, энергии в технологических операциях изготовления машиностроительных изделий средней сложности.	умеет: - использовать методы разработки физических и математических моделей теплотехнических процессов, использовать САРР-системы для расчета норм расхода материалов, инструментов, энергии в технологических операциях изготовления машиностроительных изделий средней сложности.	- использовать методы разработки физических и математических моделей теплотехнических процессов, использовать САРР-системы для расчета норм расхода материалов, инструментов, энергии в технологических операциях изготовления машиностроительны х изделий средней сложности.
Третий этап (уровень)	Владеть:	Не владеет: -навыками физического и	Владеет частично: -навыками	Достаточно хорошо владеет:	Уверенно владеет: -навыками
	физического и математического моделирования теплотехнических процессов,	математического моделирования теплотехнических процессов, навыками расчета с применением САРР-систем	физического и математического моделирования теплотехнических процессов, навыками	- навыками физического и математического моделирования теплотехнических	физического и математического моделирования теплотехнических процессов,
	навыками расчета	норм времени, материалов,	расчета с	процессов, навыками	навыками расчета с

с применением	инструментов, энергии на	применением САРР-	расчета с применением	применением САРР-
САРР-систем	технологические операции	систем норм времени,	C + DD	систем норм
норм времени,	изготовления	материалов,	времени, материалов,	времени,
материалов,	машиностроительных	инструментов,	инструментов, энергии	материалов,
инструментов,	изделий средней сложности.	энергии на	на технологические	инструментов,
энергии на		технологические	операции изготовления	энергии на
технологические		операции	машиностроительных	технологические
операции		изготовления	изделий средней	операции
изготовления		машиностроительных	сложности.	изготовления
машиностроитель		изделий средней		машиностроительны
ных изделий		сложности.		х изделий средней
средней				сложности.
сложности.				

ПК-21 способностью подготавливать научно-технические отчеты, обзоры, публикации по результатам выполненных исследований

Этап (уровень)	Планируемые	K	Критерии оценивания результатов обучения			
освоения компетенции	результаты обучения (показатели достижения заданного уровня освоения компетенций)	2 («Не удовлетворительно»)	3 («Удовлетворительно »)	4 («Хорошо»)	5 («Отлично»)	
Первый этап (уровень)	Знать: публикации по тематике исследования.	Не знает: публикации по тематике исследования.	Знает фрагментарно: публикации по тематике исследования.	В основном знает: публикации по тематике исследования.	Уверенно знает: публикации по тематике исследования.	
Второй этап (уровень)	Уметь: подготавливать научно-технические отчеты, обзоры,	Не умеет: подготавливать научнотехнические отчеты, обзоры, публикации по результатам выполненных исследований.	Умеет частично: подготавливать научно-технические отчеты, обзоры, публикации по	Достаточно хорошо умеет: подготавливать научнотехнические отчеты, обзоры, публикации по	Уверенно умеет: подготавливать научно-технические отчеты, обзоры, публикации по	

	публикации по		результатам	результатам	результатам
	результатам		выполненных	выполненных	выполненных
	выполненных		исследований.	исследований.	исследований.
	исследований.				
Третий этап	Владеть:	Не владеет:	Владеет частично:	Достаточно хорошо	Уверенно владеет:
(уровень)	навыками	навыками подготовки	навыками подготовки	владеет:	навыками
	подготовки	научно-технических отчетов,	научно-технических	навыками подготовки	подготовки научно-
	научно-	обзоров, публикаций по	отчетов, обзоров,	научно-технических	технических
	технических	результатам выполненных	публикаций по	отчетов, обзоров,	отчетов, обзоров,
	отчетов, обзоров,	исследований	результатам	публикаций по	публикаций по
	публикаций по		выполненных	результатам	результатам
	результатам		исследований.	выполненных	выполненных
	выполненных			исследований.	исследований.
	исследований.				

4.2 Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций

Д	Результаты обучения	Формируемая	Оценочные
		компетенция (с указанием	средства
		кода)	-L
Знать	-методы разработки физических и математических моделей теплотехнических процессов; -методику расчета нормативов расхода материалов, инструментов, энергии на выполнение технологических операций изготовления машиностроительных изделий средней сложности с применением, САРР-систем.	ПК-20 способностью разрабатывать физические и математические модели исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере, разрабатывать методики и организовывать проведение экспериментов с анализом их результатов	Устный опрос Задания
	Публикации по тематике исследования.	ПК-21 способностью подготавливать научнотехнические отчеты, обзоры, публикации по результатам выполненных исследований	Устный опрос, контрольна я работа, КП
Уметь	Использовать методы разработки физических и математических моделей теплотехнических процессов; использовать САРР-системы для расчета норм расхода материалов, инструментов, энергии в технологических операциях изготовления машиностроительных изделий средней сложности.	ПК-20 способностью разрабатывать физические и математические модели исследуемых машин, приводов, систем, процессов, явлений и объектов, относящихся к профессиональной сфере, разрабатывать методики и организовывать проведение экспериментов с анализом их результатов	Устный опрос, КР, КП
	Подготавливать научнотехнические отчеты, обзоры, публикации по результатам выполненных исследований.	ПК-21 способностью подготавливать научнотехнические отчеты, обзоры, публикации по результатам выполненных исследований	Устный опрос Задания
Владеть (навыки / опыт деятельнос	навыками физического и математического моделирования теплотехнических процессов;	ПК-20 способностью разрабатывать физические и математические модели	Устный опрос, контрольна я работа,

ти)	навыками расчета с применением САРР-систем норм времени, материалов, инструментов, энергии на технологические операции изготовления машиностроительных изделий средней сложности.	приводов, систем, процессов, явлений и	КП
	навыками подготовки научнотехнических отчетов, обзоров, публикаций по результатам выполненных исследований	ПК-21 способностью подготавливать научнотехнические отчеты, обзоры, публикации по результатам выполненных исслелований	Устный опрос, КР, КП

4.2.1 Контрольные вопросы для экзамена

Структура процесса проектирования. Стадии, иерархические уровни.

- 1. Выразите закон сохранения массы для системы, состоящей из одного компонента для многокомпонентной системы.
- 2. Приведите выражение теплового баланса аппарата.
- 3. Что понимают под плотностью конвективного потока?
- 4. По каким признакам разделяют материальные балансы?
- 5. Приведите выражения материальный балансов для стационарных и нестационарных процессов.
- 6. Гидростатика и гидродинамика, их основные задачи.
- 7. Сформулируйте понятия идеальной, капельной и упругой жидкостей.
- 8. Что представляет собой гидростатическое давление?
- 9. Чем обусловлено торможение движения жидкости у твердой поверхности?
- 10. Что такое средняя скорость движения жидкости?
- 11. Укажите физический смысл критерия Рейнольдса? Как это влияет на тепловой и массообмен?
- 12. Что является потенциалом переноса субстанций?
- 13. Назовите основное уравнение переноса массы, энергии и импульса.
- 14. Назовите основные достоинства и недостатки теории подобия и анализа размерностей.
- 15. В чем проявляется влияние гидродинамической структуры потоков на химико-технологические процессы?
- 16. Что понимают под средним временем пребывания частиц потока в аппарате. от чего оно зависит и как определяется?
- 17. Перечислите основные методы перемешивания жидких сред.
- 18. Что такое суспензия, эмульсия, аэрозоль?
- 19. Приведите понятия температурного градиента и изотермической поверхности.
- 20. Что такое аналогии Рейнольдса, Прандтля, Кольборна?
- 21. В чем состоит различие между процессами конвекции и теплоотдачи?
- 22. Сопоставьте движущие силы и расходы теплоносителей при прямоточном и противоточном движении теплоносителей в теплообменнике.
- 23. Перечислите основные достоинства и недостатки нагрева насыщенным водяным паром.
- 24. Каковы назначение и принцип действия конденсатоотводчиков?
- 25. Как определяется температура кипения раствора в выпарных аппаратах однокорпусной и многокорпусной выпарных установок?

4.2.2 Примеры экзаменационного билета

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Башкирский государственный университет» Инженерный факультет

Кафедра «Технологические машины и оборудование»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1

По учебной дисциплине «Современные методы оптимизации тепломассообменных процессов»

Направление: 15.04.02 — Технологические машины и оборудование Профиль: Инжиниринг технологического оборудования химических и нефтехимических производств

Министерство образования и науки Российской Федерации Федеральное государственное бюджетное образовательное учреждение высшего образования «Башкирский государственный университет» Инженерный факультет

Кафедра «Технологические машины и оборудование»

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 2

По учебной дисциплине «Современные методы оптимизации тепломассообменных процессов»

Направление: 15.04.02 — Технологические машины и оборудование Профиль: Инжиниринг технологического оборудования химических и нефтехимических производств

- 1.В чем проявляется влияние гидродинамической структуры потоков на химико-технологические процессы?
- 2. Что понимают под средним временем пребывания частиц потока в аппарате. от чего оно зависит и как определяется?

Утверждено на заседании кафедрь	I	, протокол №	
	(дата)		
Заведующий кафедрой			
(п	одпись)	(О.И.Ф)	

Критерии оценки:

Оценка «5»:

- глубокое и прочное усвоение программного материала;
- полные, последовательные, грамотные и логически излагаемые ответы при видоизменении задания;
- свободно справляющиеся с поставленными задачами, знания материала,
- правильно обоснованные принятые решения;
- владение разносторонними навыками и приемами выполнения практических работ.

Оценка «4»:

- знание программного материала;
- грамотное изложение, без существенных неточностей в ответе на вопрос;

- правильное применение теоретических знаний;
- владение необходимыми навыками при выполнении практических задач.

Оценка «3»:

- усвоение основного материала;
- при ответе допускаются неточности;
- при ответе недостаточно правильные формулировки;
- нарушение последовательности в изложении программного материала;
- затруднения в выполнении практических заданий.

Оценка «2»:

- незнание программного материала;
- при ответе возникают ошибки
- затруднения при выполнении практических работ

4.2.3 Образцы заданий для проведения текущего контроля

Задание для контрольной работы

Произвести тепловой расчет воздухо-воздушного пластинчатого теплообменника, материал поверхностей теплообмена — нержавеющая сталь ($\lambda = 16~\mathrm{Bt/(m\cdot K)}$), толщина разграничивающих пластин $\delta nl = 0.2~\mathrm{mm}$. Индекс h — соответствует горячему теплоносителю (hot), а индекс с — холодному (could).

Таблица 1 Исходные данные

№ варианта	Горяч	Горячий теплоноситель			Холодный теплоноситель		
	Рас- ход <i>G_h</i> , кг/с	Давление на входе P_h , Па	Температура на входе T'_h , K	Температура на выходе T''_h , К	Рас- ход G_c , кг/с	Давление на входе P_c , Па	Температура на входе T'_c , K
1	0,21		601	381	0,71		241
2	0,22		602	382	0,72		242
3	0,23	0.105	603	383	0,73	0.21.105	243
4	0,24	8·10 ⁵	604	384	0,74	$0.31 \cdot 10^5$	244
5	0,25		605	385	0,75		245
6	0,26		606	386	0,76		246

7	0,27	607	387	0,77	247
8	0,28	608	388	0,78	248
9	0,29	609	389	0,79	249
0	0,3	610	390	0,8	250

Недостающие данные принять самостоятельно

Таблица 2 Варианты для выполнения задачи

№ вар.	По горячему воздуху (см. таб. 4-6)	Направление движения теплоносителей	По холодному воздуху (см. таб. 4-6)	Тип поверхности (см. таб. 4-6)
1	N=2	прямоток	N=3	с жалюзийны ми ребрами
2	<i>N</i> =1	прямоток	N=5	с треугольны ми ребрами
3	N=3	противоток	N=4	с прямоугольн ыми ребрами
4	<i>N</i> =1	противоток	N=4	с жалюзийны ми ребрами
5	N=2	прямоток	N=5	с треугольны ми ребрами
6	<i>N</i> =1	противоток	N=3	с прямоугольн ыми ребрами

7	N=2	прямоток	N=4	с жалюзийны ми ребрами
8	N=3	противоток	<i>N</i> =6	с треугольны ми ребрами
9	<i>N</i> =1	противоток	N=2	с прямоугольн ыми ребрами
0	<i>N</i> =1	противоток	N=3	с жалюзийны ми ребрами

Методика расчета

1. Определить температуру холодного воздуха на выходе

$$T_{c}'' = \frac{G_{h}C_{ph}}{G_{c}C_{pc}}(T_{h}' - T_{h}'') + T_{c}'$$

2. Определить сренюю температуру теплоносителя
$$T_c^{cp} = \frac{T_c^{''} + T_c^{'}}{2} \quad T_h^{cp} = \frac{T_h^{''} + T_h^{'}}{2}$$

- 3. Найти по справочнику теплофизические свойства теплоносителя (горячего и холодного) при средней температуре и давлении.
- 4. Необходимо задаться скоростями W теплоносителя Для газовых рабочих сред выбрать нужное значение скорости можно на основании таблицы 3

Таблица 3 Значение скорости теплоносителя в зависимости от давления

Диапазон рабочего давления, МПа	Скорость движения теплоносителя, м/с
0,1-0,5	5-30
0,5-2,0	3-5
2,0-20,0	1-3

5. Определить числа Рейнольдса для теплоносителя

$$\operatorname{Re}_{\scriptscriptstyle h} = \frac{d_{\scriptscriptstyle h} \rho_{\scriptscriptstyle h} W_{\scriptscriptstyle h}}{\mu_{\scriptscriptstyle h}} \operatorname{Re}_{\scriptscriptstyle c} = \frac{d_{\scriptscriptstyle c} \rho_{\scriptscriptstyle c} W_{\scriptscriptstyle c}}{\mu_{\scriptscriptstyle c}}$$

где dh и dc – это de для горячего и холодного теплоносителя соответственно

6. Определить числа Нуссельта для теплоносителей Числа Нуссельта для газовых теплоносителей для пластинчатых поверхностей с треугольным профилем оребрения определяется по следующим эмпирическим зависимостям:

1. В области чисел Рейнольдса 200 < Re < 1500 справедливо соотношение

Nu =1,55
$$\left(\frac{Ped_e}{l}\right)^{1/3} \varepsilon_l$$

где Ре — число Пекле; 1 — длина трубы; коэффициент, учитывающий изменение коэффициента теплоотдачи по длине трубы ε_l =1,44 - 0,0044 l/d_e при 20 < 1/de < 100, и при l/de>100.

Критерий Пекле рассчитывается следующим образом

$$Pe = \frac{Wd_e}{a}$$

где de определяем по табл. 4-6 в зависимости от теплоносителя; W — скорость теплоносителя; а = $\lambda/(cp\rho)$ — коэффициент температуропроводности; ср — теплоемкость при постоянном давлении; λ — коэффициент теплопроводности воздуха.

 Таблица 4

 Геометрические характеристики пластинчатых поверхностей теплообмена с глалкими треугольными ребрами

				тладкийи	треугольны	ии реорам
N	b, mm	a, mm	β , M^2/M^3	δp , мм	F_p/F_n	de, mm
1	1	1	5215	0,05	0,616	0,53
2	3	1,4	3000	0,1	0,78	0,91
3	3,26	3,1	1945	0,1	0,658	1,82
4	4,1	3	1715	0,1	0,717	1,94
5	6	2,8	1400	0,1	0,78	2,05
6	7	4,6	1160	0,15	0,78	2,94

Таблица 5

Геометрические характеристики пластинчатых поверхностей теплообмена с гладкими прямоугольными ребрами

N	<i>b</i> , мм	a, MM	β , M^2/M^3	δp , мм	Fp/Fn	de, мм
1	2	3	1400	0,3	0,288	1,95
2	4	2	1390	0,15	0,64	2,44
3	4	4	860	0,2	0,418	3,77
4	7,8	2,2	1110	0,3	0,769	2,94

 Таблица 6

 Геометрические характеристики пластинчатых поверхностей теплообмена с

 жалюзийными ребрами

N	<i>b</i> , мм	<i>a</i> , мм	β , M^2/M^3	δp , мм	Fp/Fn	de,
1	2,5	5,6	1515	0,1	0,39	2
2	3,2	3,1	1755	0,1	0,64	1,73
3	6,14	9,2	790	0,15	0,57	4,4
4	7	4,6	1160	0,15	0,75	2,94

Критерии оценки:

Отлично:

Оценка «5»

выставляется, если студент выполнил работу без ошибок и недочетов, допустил не более одного недочета

Хорошо

Оценка «4»

если студент выполнил работу полностью, но допустил в ней не более одной негрубой ошибки и одного недочета, или не более двух недочетов.

Удовлетворительно

Оценка «3»

если студент правильно выполнил не менее половины работы или допустил не более двух грубых ошибок, или не более одной грубой и одной негрубой ошибки и одного недочета, или не более двух-трех негрубых ошибок, или одной негрубой ошибки и трех недочетов, или при отсутствии ошибок, но при наличии четырех-пяти недочетов, плохо знает текст произведения, допускает искажение фактов.

Неудовлетворительно:

Оценка «2»

если студент допустил число ошибок и недочетов превосходящее норму, при которой может быть выставлено«5» баллов, или если правильно выполнил менее половины работы.

4.2.4 Образцы заданий для курсовых проектов

Примерные темы курсовых проектов

- 1.Основные понятия и определения теории рационального использования энергетических и материальных ресурсов
- 2. Основные методы энерго- и ресурсосбережения, используемые в современном теплообменном аппарате
- 3. Принципы построения и организации безотходных тепло-массообменных процессов
- 4. Постановка задачи оптимизации тепло-массообменных процессов
- 5. Классификация задач оптимизации. Выбор целевой функции и управляющих переменных при оптимизации
- 6.Многомерная оптимизация. Ограничения, которые усложняют поиск оптимума
- 7. Понятие о многоцелевой оптимизации
- 8. Аппараты воздушного охлаждения и т.д.

Примеры опросных листов на проектирование кожухотрубчатого теплообменного аппарата:

ТЕХНИЧЕСКОЕ ЗАДАНИЕ Е1045

на поставку кожухотрубчатого теплообменного аппарата

Общие сведения

Предприятие - заказчик:	-
Наименование установки:	-
Назначение аппарата:	холодильник дизельной фракции
Вид аппарата:	кожухотрубчатый
Тип аппарата:	по усмотрению претендента
Техническое обозначение:	-

Номер стандарта:	TV 3612-023-00220302-01
	ТУ 3612-024-00220302-02

Технические требования

Ориентация аппарата:	по усмотрению претендента
Тип изоляции:	по усмотрению претендента
Материальное исполнение	
1) кожух:	<i>09Γ2C</i>
2) трубы:	по усмотрению претендента
3) опора:	Cm3

Дополнительные требования

Срок службы аппарата:	не менее 10 лет
Межремонтный пробег:	не менее 5 лет

Приложения

Приложение 2 - Опросный лист на проектирование кожухотрубчатого теплообменного аппарата по данным технологического процесса

Пример решения:

Условия задачи

Таблица 1

$N_{\underline{0}}$	Наименование	Ед. изм.	Внутритруб. зона	Межтрубная
				зона
1	Наименование среды	-	Жидкое топливо	Водяной пар
2	Расход жидкости	Кг/ч	6628	312
3	Температура	°C		
	1) на входе		40	195
	2) на выходе		90	124
4	Теплофизические свойства	при	средней темп.	средней
	рабочих сред			темп.
	плотность	K_{Γ}/M^3	928	справ.
	вязкость	Па*с	0.00156	справ.

теплопроводность	Вт/м*°С	0.1	справ.
теплоемкость	Дж/кг*°С	1612	справ.

Данные про свойства воды возьмем из справочников.

Уравнение теплового баланса

$$N_2 = \frac{G^2}{3600} * c2 * (t21 - t22) + r2 * \frac{G^2}{3600} = 198992,73 Дж/с$$
 (1)

$$N_1 = \frac{G1}{3600} * c1 * (t12 - t11) = 156973,1333$$
 Дж\с

Потери при передаче тепла

$$Nnom = \frac{N2-N1}{N2} * 100 = 21,1161$$
 Дж\с (2)

N – количество теплоты, Дж\с;

 $G_{1,2}$ – расход жидкости, K_{Γ}/Ψ ; $c_{1,2}$ – теплоемкость, Дж/к $\Gamma^{*\circ}$ С;

 t_{12}, t_{22} – выходные температуры сред, °C; t_{21}, t_{11} – входные температуры сред, °C;.

Средняя разница температур

 $T_6 = t_{21} - t_{12} = 105 \text{ }^{\circ}\text{C}$

 $T_{\rm M} = t_{22} - t_{11} = 84 \, {\rm ^{\circ}C}$

$$T_{cp} = \frac{T_{\delta} - T_M}{\ln \frac{T_{\delta}}{T_M}} = 94,11 \text{ °C}$$
 (3)

 T_6 – наибольшая разница между входной-выходной температурами сред, °C;

 $T_{\rm M}$ – наименьшая разница между входной-выходной температурами сред, °C.

Число трубок

Нужен турбулентный поток в трубах, возьмем теоретическое число Рейнольдса равным 5000. Параметры трубок: внешний диаметр = 16 мм, внутренний = 10 мм, толщина стенок = 2,5 мм.

$$n_{\rm Tp} = \frac{4 * \frac{G_1}{8600}}{\pi * d6n * \eta 1 * Re1.np} = 39,23 \tag{4}$$

 $G_{1,2}$ – расход жидкости, кг/ч;

 π – число Пи;

d_{вн} – внутренний диаметр трубок, м;

 η_1 – вязкость среды, Πa^*c ;

Re_{теор} – теоретическое число Рейнольдса.

Количество трубок в теплообменнике берем n = 85 шт.

Скорость потока жидкости в трубках

Теплообменник будет двухходовой, следовательно, в следующей формуле делим количество трубок на количество ходов:

$$V_1 = \frac{\frac{4*G_1}{8600}}{\frac{8600}{4}*\pi*46\pi^42*\rho 1} = 1,24$$
 (5)

 V_1 – скорость потока, м/с;

n – количество трубок, шт; $G_{1,2}$ – расход жидкости, кг/ч; π – число Пи;

 d_{BH} – внутренний диаметр трубок, м; $p_{1,2}$ – плотность сред, K_{Γ}/M^{3} .

Число Рейнольдса

Уточним число Рейнольдса с учетом двух ходов теплообменника:

$$Re1 = \frac{v1*den*\rho1}{v1} = 9231,31 \tag{6}$$

Re – число Рейнольдса;

V1 – скорость потока, м/с; d – диаметр сосуда, м;

р - плотность среды, K_{Γ}/M^3 ;

 η – вязкость среды, Πa^*c .

Число Прандтля для жидкого топлива

$$Pr1 = \frac{\eta_{1} * c_{1}}{\lambda_{1}} = 18,19 \tag{7}$$

Pr – число Прандтля;

 η – вязкость среды, Πa^*c ;

c – теплоемкость среды, Дж/кг*°С;

 λ – теплопроводность среды, Bт/м*°C.

Число Прандтля для свойств топлива

$$Pr1w = \frac{\eta_{1*1,2*c1}}{\lambda_{1*0.9}} = 24,26 \tag{8}$$

Pr – число Прандтля;

 η – вязкость среды, Πa^*c ;

с – теплоемкость среды, Дж/кг*°С;

 λ – теплопроводность среды, $B_T/M^{*\circ}C$.

Число Нуссельта для турбулентного потока

e = 1

$$Nu_1 = 0.021 * e * Re1^{0.8} * Pr1^{0.43} * (\frac{Pr1}{Pr1w})^{0.25} = 101.15$$
(9)

Расчеты межтрубной зоны

Внутренний диаметр кожуха

1.5 *
$$d$$
н ap * \sqrt{nmp} = 0,2213 м (10)

 $D_{\text{внут}}$ – внутренний диаметр кожуха теплообменника, м; $d_{\text{вн}}$ – внутренний диаметр трубок, м; n – количество трубок, шт.

Берем в качестве кожуха теплообменника обечайку с внутренним диаметром 259 мм.

 $D_{BHYTp} = 0,259 \text{ M}$

$$d_{3KB} = D_{BHYTP} - \sqrt{n} * d_{BHeIII} = 0,111 (м)$$
 (11)

 $D_{\text{внутр}}$ — внутренний диаметр кожуха теплообменника, м; $d_{\text{внеш}}$ — внешний диаметр трубок, м; n — количество трубок, шт.

Скорость потока жидкости в межтрубной зоне

$$V2 = \frac{4*G2/3600}{\pi*d9KE^2*ep2} = 4,525 \text{ (M/c)}$$
 (12)

V2 – скорость потока, м/с;

n – количество трубок, шт; $G_{1,2}$ – расход жидкости, кг/ч; π – число Пи;

 $d_{\text{экв}}$ — эквивалентный внутренний диаметр кожуха теплообменника, м;

 $p_{1,2}$ – плотность сред, K_{Γ}/M^{3} .

Число Рейнольдса для межтрубной зоны

$$Re_2 = \frac{\text{v2} * \text{d3kE} * \text{p2}}{\text{n2}} = 5049,88$$
 (13)

$$Pr2 = \frac{\eta 2 * c2}{\lambda 2} = 1.2$$

Число Прандтля при 80 градусах Цельсия

$$Pr2w = \frac{\eta 2 * c2}{\lambda 2} = 1.2$$

Число Нуссельта для воды

E=1

$$Nu_2 = 0.4 * E * Re2^0.6 * Pr2^0.36 * (\frac{pr2}{pr2w})^0.25 = 71,25$$

Коэффициенты теплоотдачи

$$\alpha_1 = \frac{\text{Nu1}*\lambda 1}{\text{deh}} = 1132.87$$

$$\alpha_2 = \frac{\text{Nu}2*\lambda^2}{\text{dake}} = 434.58$$
 (14)

Материал наших трубок сталь марки 15, где $\lambda = 96 \, \delta_{mp} = 0,003$

 $\alpha_{1,2}$ – коэффициенты теплоотдачи, $Bт/м*^{\circ}C$; Nu – число Нуссельта;

 λ – теплопроводность среды, Bт/м*°C;

d – внутренний диаметр сосуда, м.

$$K = \frac{1}{1/\alpha 1 + \delta \cdot mp/\lambda \cdot mp + 1/\alpha 2 + 0.0003 + 0.0005} = 249,06$$
 (15)

 $\alpha_{1,2}$ – коэффициенты теплоотдачи, $B_T/M^{*\circ}C$;

 λ – теплопроводность среды, Bт/м*°C;

 δ – толщина стенки трубок, м,

 $R_{1,2}$ – коэффициенты загрязнения, м^2*ч*°С \ ккал.

Площадь требуемой расчетной поверхности теплообмена

$$F_{pacy} = \frac{N1}{K*\Delta T cp} = 6.7 \text{ m}^2 \tag{16}$$

 F_{pacy} – площадь требуемой поверхности трубок, м²;

N – количество теплоты, Дж;

 ΔT_{cp} – средняя разница температур, °C;

К – коэффициент теплопередачи, Вт/м*°С.

Площадь конструкторская

l=2

$$F_{\text{констр}} = \pi * d + ap * l * n. mp = 8,55 \text{ m}2$$
 (17)

 $F_{\mbox{\tiny констр}}-$ конструкторская площадь поверхности трубок, $\mbox{\scriptsize M}^2;$

 π – число Пи;

d_{внеш} − внешний диаметр трубок, м; 1 − длина трубок, м;

n – количество трубок, шт.

Запас поверхности

$$\frac{F_{KCMP}}{F_{PACY}} = 1,276 \tag{18}$$

Критерии оценки курсового проекта:

Отлично:

Оценка «5»

выставляется, если студент выполнил работу без ошибок и недочетов, допустил не более одного недочета

Хорошо

Оценка «4»

если студент выполнил работу полностью, но допустил в ней не более одной негрубой ошибки и одного недочета, или не более двух недочетов.

Удовлетворительно

Оценка «3»

если студент правильно выполнил не менее половины работы или допустил не более двух грубых ошибок, или не более одной грубой и одной негрубой ошибки и одного недочета, или не более двух-трех негрубых ошибок, или одной негрубой ошибки и трех недочетов, или при отсутствии ошибок, но при наличии четырех-пяти недочетов, плохо знает текст произведения, допускает искажение фактов.

Неудовлетворительно:

Оценка «2»

1. если студент допустил число ошибок и недочетов превосходящее норму, при которой может быть выставлено«5» баллов, или если правильно выполнил менее половины работы

5.Учебно-методическое и информационное обеспечение дисциплины

5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Теплотехника / Под ред. Шатрова М. Г. М.: Академия, 2013. 288 с.
- 2. Коновалов В. И., Пахомов А. Н., Гатапова Н. Ц., Колиух А. Н. Методы решения задач тепломассопереноса: Теплопроводность и диффузия в неподвижной среде: учебное пособие. Тамбов: издательство ФГОУ ВПО «ТГТУ», 2012. 81 с. ЭВК, ЭБС УБО http://biblioclub.ru/index.php?page=book_red&id=277809&sr=1
- 3. Дьяконов В. Г., Лонщаков О. А. Основы теплопередачи: учебное пособие. Казань: Издательство КНИТУ, 2011. 230 с. ЭВК, ЭБС УБО http://biblioclub.ru/index.php?page=book&id=258437&sr=1
- 4. Круглов Г. А., Булгакова Р. И., Круглова Е. С. Теплотехника. Лань, 2012. 208 с. ЭВК, ЭБС «Лань»

Дополнительная литература:

- 1. http://e.lanbook.com/books/element.php?pl1_id=3900
- 2. Лекции по теплотехнике: конспект лекций / Сост. Никитин В. А. Оренбург: ОГУ, 2011. 532 с. ЭВК, ЭБС УБО http://biblioclub.ru/index.php?page=book&id=259242&sr=1
- 3. Терехов В. И., Пахомов М. А. Тепломассоперенос и гидродинамика в газокапельных потоках: монография. Новосибирск: НГТУ, 2008. 282 с. ЭВК, ЭБС УБО http://biblioclub.ru/index.php?page=book_red&id=436050&sr=1

Перечни основной и дополнительной литературы должны удовлетворять требованиям, предъявляемым к списку литературы

- 5.2.Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины
- 1. http://biblioclub.ru/
- 2. http://e.lanbook.com
- 3. www.elibrary.ru
- 4. www.elib.bashedu.ru
- 5. www.truboprovod.ru
- 6. http://kompas.ru/
- 7. www.plm.automation.siemens.com

Приводятся ссылки на специальные сайты, перечень лицензионного или находящегося в свободном доступе программного обеспечения, необходимые для изучения данной дисциплины

6.Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Наименование специализированных аудиторий, кабинетов, лабораторий	Вид занятий	Наименование оборудования, программного обеспечения
1	2	3
Учебная аудитория для проведения занятий лекционного типа: аудитория №401(Учебный корпус, адрес 450078, ул. Мингажева, д. 100)	Лекции	1.Мультимедиа-проектор Panasonic PT-EW640E 2. Lumien Master Picture, 244х183 3.Аудиосистема. 4.Терминал видеоконференцсвязи LifeSize Icon 600 Camera 10хPhone 2ndGeneration "5.ПК PowerCool i5-9400/DDR4 8Г6 /HDD 1ТВ/450W/21.5"" /Клавиатура/Мышь" 6.Учебная мебель
Учебная аудитория для проведения занятий семинарского типа: аудитория №001 (Учебный корпус, адрес 450078, ул. Мингажева, д. 100)	Текущий контроль и промежуточная аттестация	7.Доска 1.Ноутбук Раскагd bell ENTF71BM- C36P Celeron N2830/2Gb/320Gb/DVDRW/HD4400 int/15.6/WXGA/1366*768/Lin - 5 шт "2. ПК PowerCool i5-9400/DDR4 8Г6 /HDD 1ТВ/450W/ 21.5"" /Клавиатура/Мышь" 3.Насос центробежный ADK-30 фирмы Aquario 4.Малогабаритный кожухотрубчатый теплообменный аппарат с геликоидальным потоком ТПГ159- 1,6-20Г-Т-У 5.Лабораторный макет по переработке нефтешлама. 6.Сканер механических напряжений (Магнитоанизотропный Комплекс - 2.05) 7.Низкочастотная виброустановка "Комплекс ВТУ 01МП2" 8.Ультразвуковой технологический комплекс "Шмель -2" 9.Устройство ультразвуковой ударной обработки с круглым наконечником для установки "Шмель"
Учебная аудитория для проведения групповых и индивидуальных консультаций: аудитория №401 (Учебный корпус,	Текущий контроль и промежуточная аттестация	1.Мультимедиа-проектор Panasonic PT-EW640E 2. Lumien Master Picture, 244х183 3.Аудиосистема. 4.Терминал видеоконференцсвязи LifeSize Icon 600 Camera 10хPhone

		1
адрес 450078, ул.		2nd Generation
Мингажева, д. 100)		"5.ПК PowerCool
		i5-9400/DDR4 8Гб /HDD 1ТВ/450W/
		21.5"" /Клавиатура/Мышь"
		6.Учебная мебель
		7.Доска
Учебная аудитория для	Курсовой проект	1.Мультимедиа-проектор Panasonic
проведения курсового		PT-EW640E
проектирования		2. Lumien Master Picture, 244x183
(выполнения курсовых		3. Аудиосистема.
работ): аудитория		4. Терминал видеоконференцсвязи
№401 (Учебный		LifeSize Icon 600 Camera 10xPhone
корпус, адрес 450078,		2nd Generation
ул. Мингажева, д. 100)		"5.ПК PowerCool
,		i5-9400/DDR4 8Γ6 /HDD 1TB/450W/
		21.5"" /Клавиатура/Мышь"
		6.Учебная мебель
		7.Доска
Помещение для	Самостоятельная	1.ПК PowerCool
самостоятельной	работа	i5-9400/DDR4 8Γ6 /HDD 1TB/450W/
работы: аудитория	-	21.5"" /Клавиатура/Мышь - 6 шт"
№201 (Учебный		2.Учебная мебель
корпус, адрес 450078,		
ул. Мингажева, д. 100)		

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины «Современные методы оптимизации тепломассообменных процессов»

(название дисциплины согласно рабочему учебному плану) **ОЧНАЯ**

(форма обучения)

Вид работы	Объем дисциплины
Общая трудоемкость дисциплины (ЗЕТ / часов)	5/180
Учебных часов на контактную работу с преподавателем:	39,2
лекций	16
практических/ семинарских	20
лабораторных	1
других (групповая, индивидуальная консультация и	3.2
иные виды учебной деятельности, предусматривающие	
работу обучающихся с преподавателем)	
Учебных часов на самостоятельную работу обучающихся	104.8
(СРС) включая подготовку к экзамену	
Учебных часов на подготовку к курсовому проекту	36
(Контроль)	

Форма(ы) контроля: экзамен – 3 семестр курсовой проект - 3 семестр

№ п/п	Тема и содержание	пран	стически нятия, л самост	ие заняти паборатор оятельна	ериалов: лия, семина рные работа и (в часах) ПР/СЕМ	рские ты,	Основная и дополнительна я литература, рекомендуемая студентам (номера из списка)	Задания по самостоятельно й работе студентов	Форма текущего контроля успеваемости (коллоквиумы, контрольные работы, компьютерные тесты и т.п.)
3-й с	еместр								
				1	Модуль 1		Г	Г	
1	1.Введение. Роль дисциплины в прикладных научных исследованиях и производстве современного оборудования, посвященные процессам теплопередачи. 2.Обзор технологических и производственных процессов, где применяются техника и технологии теплопередачи между двумя рабочими средами. Установки нефтегазовых и нефтеперерабатывающих отраслей.	21	2	-	4	15	1, §1 2, §1-2 3, §1-2 4, §2-8 5, §3-6 6, §3-5	1, стр.9-20 2, стр. 8 3, стр. 7-18 4, стр.25 5, стр. 16 6, стр.22	Контрольная работа
2	3.Роль современного теплообменного оборудования в нефтепереработке. Установка обессоливания и обезвоживания нефти. Установка атмосферной перегонки нефти. Установка гидрокрекинга. Установка каталитического риформинга. 4.Виды теплообменных аппаратов. Испарители. Конденсаторы. Холодильники. Подогреватели. Теплообменники.	21	2	-	4	15	1, §12-14 2, §13-18 4, §18-22 5, §23-26 6, §13-16	1,стр.36 2, стр.22 4,стр.42 5, стр.26 6, стр.34	Контрольная работа

Модуль 2								
1.Удельная теплоемкость. Теплопроводность. Свободная конвекция. Вынужденная конвекция. Конвективные потоки. 2.Существующие конструкции кожухотрубчатых теплообменных аппаратов. Линзовый компенсатор. Плавающая головка. U-образные трубы. Другие виды конструкций КТТА.	52	4	-	8	40	1, §32 2, §30 3, §35 4, §32 5, §33	1, стр.78 2, стр. 51 1, стр.90 2, стр. 67 1, стр.69	Контрольная работа
3.Аппараты воздушного охлаждения. Предназначение ABO. ABM, ABГ, AB3. 4. Проектирование теплообменных аппаратов. Влияние ламинарного и турбулентного потоков на теплопередачу. Влияние давления на теплопередачу.	46,3	8	-	4	34.3	1-5, глава XII 5-10, глава XVI-XIX	1-5, стр 250-297 5-10, стр. 332-371	Контрольная работа
			•	•				Курсовой проект
								ЭКЗАМЕН

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины «Современные методы оптимизации тепломассообменных процессов»

(название дисциплины согласно рабочему учебному плану) **3аочная**

(форма обучения)

Вид работы	Объем дисцип
	лины
Общая трудоемкость дисциплины (ЗЕТ / часов)	2/72
Учебных часов на контактную работу с преподавателем:	20
лекций	8
практических/ семинарских	12
лабораторных	-
других (групповая, индивидуальная консультация и	-
иные виды учебной деятельности, предусматривающие	
работу обучающихся с преподавателем)	
Учебных часов на самостоятельную работу	52
обучающихся (СРС) включая подготовку к экзамену	
Учебных часов на подготовку к	-
экзамену/зачету/дифференцированному зачету	
(Контроль)	

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины «Современные методы оптимизации тепломассообменных процессов»

(название дисциплины согласно рабочему учебному плану) заочная форма

Вид работы	Объем дисциплины
Общая трудоемкость дисциплины (ЗЕТ / часов)	3/108
Учебных часов на контактную работу с преподавателем:	23,2
лекций	8
практических/ семинарских	12
лабораторных	
других (групповая, индивидуальная консультация и иные виды	3.2
учебной деятельности, предусматривающие работу обучающихся с	
преподавателем)	
Учебных часов на самостоятельную работу обучающихся (СРС)	75.8
включая подготовку к экзамену	
Учебных часов на подготовку к курсовому проекту (Контроль)	9

Форма(ы) контроля: экзамен – 4 семестр курсовой проект - 4 семестр

№ п/п	Тема и содержание	Форма изучения материалов: лекции, практические занятия, семинарские занятия, лабораторные работы, самостоятельная работа и трудоемкость (в часах) Всего ЛК ЛР ПР/ СЕМ СРС				ские ы,	Основная и дополнительная литература, рекомендуемая студентам (номера из списка)	Задания по самостоятельной работе студентов	Форма текущего контроля успеваемости (коллоквиумы, контрольные работы, компьютерные тесты и т.п.)
					й семест	-			
				<u> </u>	Лодуль 1			T	
1	1.Введение. Роль дисциплины в прикладных научных исследованиях и производстве современного оборудования, посвященные процессам теплопередачи. 2.Обзор технологических и производственных процессов, где применяются техника и технологии теплопередачи между двумя рабочими средами. Установки нефтегазовых и нефтеперерабатывающих отраслей.	22	4	-	6	25	1, §1 2, §1-2 3, §1-2 4, §2-8 5, §3-6 6, §3-5	1, стр.9-20 2, стр. 8 3, стр. 7-18 4, стр.25 5, стр. 16 6, стр.22	Контрольная работа
2	3.Роль современного теплообменного оборудования в нефтепереработке. Установка обессоливания и обезвоживания нефти. Установка атмосферной перегонки нефти. Установка гидрокрекинга. Установка каталитического риформинга. 4.Виды теплообменных аппаратов. Испарители. Конденсаторы. Холодильники. Подогреватели. Теплообменники.	33	4	-	6	26,5	1, §12-14 2, §13-18 4, §18-22 5, §23-26 6, §13-16	1,стр.36 2, стр.22 4,стр.42 5, стр.26 6, стр.34	Контрольная работа

	Модуль 2								
1	1.Удельная теплоемкость. Теплопроводность. Свободная конвекция. Вынужденная конвекция. Конвективные потоки. 2.Существующие конструкции кожухотрубчатых теплообменных аппаратов. Линзовый компенсатор. Плавающая головка. U-образные трубы. Другие виды конструкций КТТА.	23	4	-	6	37	1, §32 2, §30 3, §35 4, §32 5, §33	1, стр.78 2, стр. 51 1, стр.90 2, стр. 67 1, стр.69	Контрольная работа
2	3.Аппараты воздушного охлаждения. Предназначение ABO. ABM, ABГ, AB3. 4. Проектирование теплообменных аппаратов. Влияние ламинарного и турбулентного потоков на теплопередачу. Влияние давления на теплопередачу.	22	4	-	6	38,8	1-5, глава XII 5-10, глава XVI-XIX	1-5, стр 250- 297 5-10, стр. 332-371	Контрольная работа
								Курсовой проект	
									ЭКЗАМЕН

ОПРОСНЫЙ ЛИСТ

на проектирование кожухотрубчатого теплообменного аппарата по данным технологического процесса

Характеристики

Nº	Наименование	Ед. изм.	Межтрубная зона	Внутритрубная зона
1.	Наименование среды:	-	дизельное топливо	вода
2.	Химический состав:	-	-	-
3.	Общий расход:	кг/ч	57000	32430
3.1	Расход жидкости:	кг/ч	57000	32430
3.2	Расходы пара/газа:	кг/ч	-	-
4.	Температура1) на входе:2) на выходе:3) критическая:	OC	145 85	20 75
5.	Давление 1) расчетное: 2) рабочее: 3) критическое:	МПа	2.4 2.2	1.6 1.4
6.	Допустимые перепады давления:	КПа	100	70
7.	Теплофизические свойства рабочих сред 1) плотность: 2) вязкость: 3) теплопроводность: 4) теплоёмкость:	кг/м ³ Па·с ккал/ч·м·° С ккал/кг·°С		997