МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Утверждено на заседании кафедры георетической физики протокол №5 от «17» марта 2021 г. Зав. кафедрой

Вапт Вахитов Р.М.

Согласовано: Председатель УМК физико - технического

института

А (Балапанов М.Х.)

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Численные методы и математическое моделирование

Б1.О.24.02

Направление подготовки (Специальность) Программа бакалавриата

Направление подготовки (специальность) **03.03.02 Физика**

Направленность (профиль) подготовки / Специализация **Медицинская физика**

Квалификация Бакалавр

Форма обучения Очная

Разработчик (составитель) к.фм.н., доц. Юмагузин А.Р.	ДОУ / <u>Юмагузин А.Р.</u>

Для приема: 2021 г.

Уфа 2021 г.

Составитель: Юмагузин А.Р.

Рабочая программа дисциплины утверждена на заседании кафедры общей физики, протокол №5 от «17» марта 2021 г.

Заведующий кафедрой Вахитов Р.М.

Список документов и материалов

- 1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций
- 2. Цель и место дисциплины в структуре образовательной программы
- 3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)
- 4. Фонд оценочных средств по дисциплине
 - 4.1. Перечень компетенций и индикаторов достижения компетенций с указанием соотнесенных с ними запланированных результатов обучения по дисциплине. Описание критериев и шкал оценивания результатов обучения по дисциплине.
 - 4.2. Типовые контрольные задания или иные материалы, необходимые для оценивания результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине.
- 5. Учебно-методическое и информационное обеспечение дисциплины
 - 5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины
 - 5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины, включая профессиональные базы данных и информационные справочные системы
- 6. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

По итогам освоения дисциплины обучающийся должен достичь следующих результатов обучения:

ПК-1. Способен планировать и проводить научные исследования по проблемам фундаментальной физики, медицинской физики, материаловедения и наукоемких технологий с применением современных приборов и методов исследований

Категория (группа) компетенций	Формируемая компетенция (с указанием кода)	Код и наименование индикатора достижения ком- петенции	Результаты обучения по дисциплине
ПК-1.	ПК-1. Способен планировать и проводить научные исследования по проблемам фундаментальной физики, медицинской физики, материаловедения и наукоемких технологий с применением современных приборов и методов исследований	ПК-1.1. Знать	основные методы численного решения нелинейных алгебраических и трансцендентных уравнений, систем линейных алгебраических уравнений, вычисления определенных интегралов, решения обыкновенных дифференциальных уравнений и их систем; области применения конкретных численных методов в физике правильно сформулировать математическую постановку
		ПК-1.3. Владеть	задачи; эффективно использовать в практических расчетах математическое обеспечение; составлять алгоритмы изучаемых методов; проводить промежуточную и статистическую обработку экспериментальных данных методами численного решения задач; умением реализовывать алгоритмы численных методов

2. Цель и место дисциплины в структуре образовательной программы

Дисциплина «Численные методы и математическое моделирование» относится к базовой части. Дисциплина изучается на 3 курсе в 6 семестре.

Цели изучения дисциплины: сформировать у студентов системное представление о базовых методах численного анализа. В процессе изучения курса студенты усваивают теоретические сведения о методах решения задач линейной алгебры, одномерной и многомерной минимизации, решения систем нелинейных уравнений, приближения функций и вычисления интегралов и получают практические навыки применения этих методов.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин:

алгебра, информатика, математический анализ и дифференциальные уравнения.

3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

Содержание рабочей программы представлено в Приложении № 1.

4. Фонд оценочных средств по дисциплине

4.1. Перечень компетенций и индикаторов достижения компетенций с указанием

соотнесенных с ними запланированных результатов обучения по дисциплине. Описание критериев и шкал оценивания результатов обучения по дисциплине.

Код и формулировка компетенции:

ПК-1. Способен планировать и проводить научные исследования по проблемам фундаментальной физики, медицинской физики, материаловедения и наукоемких технологий с применением современных приборов и методов исследований

Код и	Результаты обучения по дисци-	Критерии оценивания результатов обучения				
наимено-	плине					
вание ин-	(модулю)					
дикатора		«Не зачтено»	«Зачтено»			
достиже-		Will Swillish	((30 11 3 11 3 7)			
ния ком-						
петенции						
ПК-1.1. Знать	основные методы численного решения нелинейных алгебраических и трансцендентных уравнений, систем линейных алгебраических уравнений, вычисления определенных интегралов, решения обыкновенных дифференциальных уравнений и их систем; области применения конкретных численных методов в физике	Знания не сформированы	Хорошо знает или допускает незначительные ошибки при обсуждении современной картины мира. Хорошо ориентируется в истории формирования физической науки			
ПК-1.2. Уметь	правильно сформулировать математическую постановку задачи; эффективно использовать в практических расчетах математическое обеспечение; составлять алгоритмы изучаемых методов; проводить промежуточную и статистическую обработку экспериментальных данных	Умения не сформированы	Умеет использовать основы философских знаний для формирования мировоззренческой позиции			
ПК-1.3. Владеть	методами численного решения задач; умением реализовывать алгоритмы численных методов	Владения не сформированы	Без труда использует основы философских знаний для формирования мировоззренческой позиции, навыками анализа истории физики			

Критериями оценивания являются баллы, которые выставляются преподавателем за виды деятельности (оценочные средства) по итогам изучения модулей (разделов дисциплины), перечисленных в рейтинг-плане дисциплины (для зачета: текущий контроль — максимум 50 баллов; рубежный контроль — максимум 50 баллов, поощрительные баллы — максимум 10).

Шкалы оценивания:

для зачета:

зачтено – от 60 до 110 рейтинговых баллов (включая 10 поощрительных баллов), не зачтено – от 0 до 59 рейтинговых баллов).

4.2. Типовые контрольные задания или иные материалы, необходимые для оценивания результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине.

Код и наименова-	Результаты обучения по дисциплине (модулю)	Контролируемые дей-
ние индикатора		ствия по проверке зна-
достижения ком-		ний, умений и владений
петенции		(Оценочные средства)
ПК-1.1. Знать	основные методы численного решения нелинейных	Тестирование
	алгебраических и транспенлентных уравнений, си-	Локлал

	стем линейных алгебраических уравнений, вычисления определенных интегралов, решения обыкновенных дифференциальных уравнений и их систем; области применения конкретных численных методов в физике	Лабораторная работа
ПК-1.2. Уметь	правильно сформулировать математическую постановку задачи; эффективно использовать в практических расчетах математическое обеспечение; составлять алгоритмы изучаемых методов; проводить промежуточную и статистическую обработку экспериментальных данных	Тестирование Доклад Лабораторная работа
ПК-1.3. Владеть	методами численного решения задач; умением реализовывать алгоритмы численных методов	Тестирование Доклад Лабораторная работа

Рейтинг-план дисциплины приведен в приложении №2.

Ниже описаны предусмотренные рейтинг-планом оценочные средства, виды и процедуры контроля.

В рамках использования модульно-рейтинговой системы обучения и оценки успеваемости студентов итоговая оценка знаний студента по дисциплине производится по сумме баллов, полученных в рамках текущего и рубежного контроля знаний, умений и навыков в течение семестра.

За работу в семестре студент получает до 100 баллов за выполнение заданий в рамках текущего и рубежного контроля и дополнительно до 10 баллов за индивидуальные задания.

Перевод оценки из 100-балльной в четырехбалльную производится следующим образом:

- отлично от 80 до 110 баллов (включая 10 поощрительных баллов);
- хорошо от 70 до 79 баллов;
- удовлетворительно от 60 до 69 баллов;
- неудовлетворительно менее 60 баллов.

Экзаменационные билеты

Вопросы к текущему и рубежному контролю по теоретическому материалу

Место численных методов в решении научных и исследовательских задач. Машинная арифметика. Ошибки.

- 2. Место численных методов в решении научных и исследовательских задач. Машинное представление чисел. Ошибки.
- 3. Решение систем линейных алгебраических уравнений. Преимущества и недостатки основных методов (метод Крамера, метод обратных матриц, метод Зейделя). Контроль ошибок. Метод Гаусса и проблемы его реализации.
- 4. Решение систем линейных алгебраических уравнений. Контроль ошибок. LU-факторизация.
- 5. Решение систем линейных алгебраических уравнений. Проблемы реализации метода Гаусса. Вектор ошибки и невязка. Число обусловленности матрицы.
- 6. Решение систем линейных алгебраических уравнений. Нормы векторов и матриц. Число обусловленности матрицы и его интерпретация.
- 7. Задача интерполяции. Связь задачи интерполяции с задачей решения систем линейных алгебраических уравнений. Интерполяция и аппроксимация. Полиномиальная интерполяция и проблемы ее реализации.
- 8. Задача интерполяции. Связь задачи интерполяции с задачей решения систем линейных алгебраических уравнений. Степенной базис. Базис Лагранжа. Кусочно-кубическая интерполяция.
- 9. Вычисление определенного интеграла. Связь численного интегрирования с задачей интерполяции. Элементарные квадратурные формулы.
- 10. Вычисление определенного интеграла. Связь численного интегрирования с задачей интерполяции. Правило Ньютона-Котеса. Двухточечное правило Гаусса.
- 11. Вычисление определенного интеграла. Связь численного интегрирования с задачей интерполяции. Метод Гаусса-Кронрода. Автоматические и адаптивные алгоритмы.
- 12. Вычисление интеграла по бесконечным отрезкам. Усечение отрезка. Замена переменной. Формула Гаусса-Лагера. Правило th.
- 13. Аппроксимация данных. Постановка задачи. Интерполяция и аппроксимация. Метод наименьших квадратов. Аппроксимация с весами.

- 14. Аппроксимация данных. Метод наименьших квадратов. Шкалированные невязки. Использование нормальных уравнений.
- 15. Аппроксимация данных. Метод наименьших квадратов. Ортогональные факторизации. QR-факторизация.
- 16. Аппроксимация данных. Метод наименьших квадратов. Проблемы приведения матрицы коэффициентов к треугольному виду. Преобразование Хаусхолдера.
- 17. Нелинейные уравнения. Связь с задачей решения систем линейных алгебраических уравнений. Метод дихотомии. Метод Ньютона. Метод секущих.
- 18. Нелинейные уравнения. Связь с задачей решения систем линейных алгебраических уравнений. Метод Мюллера. Системы нелинейных уравнений.
- 19. Решение обыкновенных дифференциальных уравнений. Отличие задач решения ОДУ и вычисления определенных интегралов. Уравнения высокого порядка и системы уравнений. Метод Эйлера.
- 20. Решение обыкновенных дифференциальных уравнений. Устойчивые и неустойчивые уравнения. Собственные значения и матрица Якоби. Жесткие задачи.
- 21. Решение обыкновенных дифференциальных уравнений. Явный и неявный метод Эйлера. Метод трапеций.
- 22. Решение обыкновенных дифференциальных уравнений. Многошаговые методы. Общая разностная схема. Методы Адамса, Гира, Рунге-Кутты 4-го порядка. Многозначные методы.
- 23. Решение задач оптимизации. Связь решения задачи оптимизации с решением нелинейных уравнений. Одномерная оптимизация. Метод Ньютона и проблемы его реализации.
- 24. Решение задач оптимизации. Связь решения задачи оптимизации с решением нелинейных уравнений. Одномерная оптимизация. Унимодальные функции. Метод Фибоначчи. Метод золотого сечения.
- 25. Решение задач оптимизации. Многомерная оптимизация. Метод Ньютона. Метод наискорейшего спуска.
- 26. Численные методы Монте-Карло. Случайные числа. Равномерное и нормальное распределение. Использование случайных величин для вычисления определенного интеграла.
- 27. Численные методы Монте-Карло. Случайные числа. Генераторы случайных чисел (конгруэнтный целочисленный генератор Лемера, генератор Фибоначчи).
- 28. Численные методы Монте-Карло. Моделирование случайных величин: дискретные случайные величины, метод обратных функций, метод Неймана, обобщенный метод отказов, метод суперпозиции.

Критерии оценки (в баллах):

- <u>- 9-10</u> баллов выставляется студенту, если студент дал полные, развернутые ответы на все теоретические вопросы, продемонстрировал знание функциональных возможностей, терминологии, основных элементов.
- <u>- 6-8</u> баллов выставляется студенту, если студент раскрыл в основном теоретические вопросы, однако допущены неточности в определении основных понятий.
- <u>- 3-6</u> баллов выставляется студенту, если при ответе на теоретические вопросы студентом допущено несколько существенных ошибок в толковании основных понятий. Логика и полнота ответа страдают заметными изъянами. Заметны пробелы в знании основных методов. Теоретические вопросы в целом изложены достаточно, но с пропусками материала. Имеются принципиальные ошибки в логике построения ответа на вопрос.
- <u>- 1-2</u> баллов выставляется студенту, если ответ на теоретические вопросы свидетельствует о непонимании и крайне неполном знании основных понятий и методов. Обнаруживается отсутствие навыков применения теоретических знаний.

Примерные темы доклада.

- 1. Источники и классификация погрешностей результата численного решения задачи. Особенности машинной арифметики. Обусловленность и корректность задачи и устойчивость численного алгоритма. Классификация вычислительных методов.
- 2. Методы решения систем линейных алгебраических уравнений. Метод Гаусса. LU-разложение. Метод прогонки. Итерационные методы.
- 3. Поиск одномерных корней. Метод бисекции (дихотомии). Метод Ньютона с модификациями. Адаптированный метод Брендта.
- 4. Решение систем нелинейных уравнений. Метод Ньютона и его модификации. Метод Стеффенсена. Полюсные методы Ньютона. Итерационные методы. Метод Зейделя. Связь задачи нахождения многомерных корней с задачей минимизации.
- Методы одномерной минимизации. Методы прямого поиска. Метод золотого сечения. Метод парабол. Метод Ньютона.
- 6. Методы многомерной минимизации. Покоординатный спуск. Градиентный спуск. Метод Ньютона. Метод сопряженных градиентов. Динамический метод поиска многомерного минимума. Безградиентные методы. Метод деформируемого многогранника (Нелдера-Мида, «амёбы»). Метод Пауэлла.
- 7. Приближение функций и смежные вопросы. Кусочно-линейная и полиномиальная интерполяция.

- Рациональная интерполяции. Интерполяция сплайнами. Двумерная интерполяция. Метод наименьших квадратов.
- 8. Численное интегрирование. Простейшие квадратурные формулы. Квадратурные формулы Гаусса. Алгоритм Ромберга. Вычисление интегралов в нерегулярных случаях. Многомерные интегралы. Метод Монте-Карло.

Критерии оценки (в баллах):

- <u>12-15</u> баллов выставляется студенту, если студент полностью раскрыл тему доклада, дал полные, развернутые ответы на все дополнительные вопросы, продемонстрировал знание функциональных возможностей, терминологии, основных элементов по данной теме.
- <u>4</u> баллов выставляется студенту, если студент раскрыл тему доклада, однако допущены неточности при ответе на дополнительные вопросы.
- <u>- 2-3</u> баллов выставляется студенту, если при докладе студентом допущено несколько существенных ошибок в толковании основных понятий. Логика и полнота доклада страдают заметными изъянами. Заметны пробелы в знании основных методов. Теоретические вопросы в целом изложены достаточно, но с пропусками материала.
- <u>1</u> балл выставляется студенту, если доклад свидетельствует о непонимании и крайне неполном знании основных понятий по теме. Обнаруживается отсутствие навыков поиска информации.

Лабораторные работы.

Лабораторные работы составляют важную часть профессиональной подготовки студентов. Они направлены на экспериментальное подтверждение теоретических положений и формирование учебных и профессиональных практических умений. Выполнение студентами лабораторных работ направлено на обобщение, систематизацию, углубление, закрепление полученных теоретических знаний по конкретным темам дисциплин; формирование необходимых профессиональных умений и навыков;

Выполнению лабораторных работ предшествует проверка знаний студентов – их теоретической готовности к выполнению задания. Для каждой лабораторной работы предусмотрена процедура защиты в виде устного опроса студентов.

Образцы примерных лабораторных работ приведены в методических указаниях (см. список литературы).

Пример тестового задания:

- 1. Установите в правильной последовательности этапы решения задач с помощью методов математического моделирования.
 - А) Выбор или разработка численного метода
 - Б) Построение математической модели
 - В) Анализ результатов
 - Г) Исследование объекта и формулировка содержательной постановки задачи
 - Д) Разработка вычислительного алгоритма
 - Е) Проведение вычислений
 - Ж) Разработка программы на компьютере или выбор пакета прикладных программ
- 2. Продолжите.

Система математических соотношений, которым должна удовлетворять система основных параметров задачи или объекта -

- 3. Выберите основные требования, предъявляемые к математической модели.
 - А) адекватность
 - Б) сравнительная простота
 - В) доступность математической обработки
- 4. Выберите методы, которые сводят решение задачи к выполнению конечного числа арифметических действий над числами, а результаты в виде числовых значений.
 - А) графические методы
 - Б) аналитические методы
 - В) численные методы
- 5. Установите соответствие между источниками и классификацией погрешностей.
 - А) параметры, входящие в описание задачи, заданы неточно
 - Б) математическая модель описывает изучаемый объект приближенно с учетом основных наиболее существенных факторов
 - В) численный алгоритм, метод решения математической задачи дает лишь приближенное решение
 - Г) при вводе исходных данных в процессе вычисления производится округление
 - Д) погрешность приближенных чисел в процессе решения последовательно переходят в результаты вычислений и порождают новые погрешности
 - 1) погрешность метода
 - 2)неустранимая погрешность исходных данных
 - 3) вычислительная погрешность

4) неустранимая погрешность математической модели	
5) погрешность округления	
Ответ: А $-$, Б $-$, В, Γ $-$, Д $-$	
6. Округлите число 3,1415926 до четырех значащих цифр и выберите пра	вильный ответ.
A) 3, 1415	
Б) 3, 1416	
B) 3, 142	
Γ) 3, 14	
7. Впишите правильный ответ.	
Цифры $\Box 1, \Box 2, \dots \Box n$ приближенного числа а называются верными в	смысле, если
абсолютная погрешность приближенного числа а не превосходит полови	
да, которому принадлежит цифра □ n.	
8. Определите относительную погрешность приближенного числа 2,9979.	25*108.
A) 0, 00005	
Б) 0, 000005	
B) 0, 0000005	
9. Определите абсолютную погрешность приближенного числа 2,99	97925*108 .
A) 50	B) 150
Б) 100	Γ) 200
10. Выберите правильный ответ.	,
Определение допустимых погрешностей приближенных значений аргум	ентов, позволяющих вычислить
значение функции с погрешностью, не превышающей заданного, - это:	,
А) общая задача теории погрешностей	
Б) обратная задача теории погрешностей.	
11. Выберите этапы алгоритма нахождения корня уравнения с помощью	численного метола и установите
их в правильной последовательности.	теленного метода и установите
А) уточнение значения корня	
Б) интерполяция	
В) локализация корня	
Г) аппроксимация	
12. Выберите основные методы локализации корней.	
А) аналитический методБ) графический метод	
в) графическии метод В) метод половинного деления	
Г) метод итераций	
Д) метод трапеций	
Е) метод наименьших квадратов	
Ж) метод хорд	
3) метод касательных	
13. Выберите основные методы уточнения корней.	
А) аналитический метод	
Б) графический метод	
В) метод половинного деления	
Г) метод итераций	
Д) метод трапеций	
Е) метод наименьших квадратов	
Ж) метод хорд	
3) метод касательных	
14. Установите в правильной последовательности алгоритм метода полов	винного деления.
1)если $f(x)$ * $f(b)$ <0, то b = x , иначе a = x	
2)вычислим $x = (a+b)/2$; $f(x)$	
3)если $f(x) = 0$, переходим к выводу значения х	
4)конец.	
5)если □b-а□>□, то переходим к началу алгоритма	
6)выводим значение х	
Ответ:	
15. Выберите первое условие, которое необходимо выполнить при испол	ьзовании метода простых итера-
ций.	
А) выбрать начальное приближение х0	
Б) исходное уравнение преобразовать к виду, удобному для итерац	ций

В) произвести отделение корня.	
Ответ:	

Критерии оценки (в баллах):

- <u>5</u> баллов выставляется студенту, если дано от 86 до 100% верных ответов.
- 4 балла выставляется студенту, если дано от 71 до 85% верных ответов;
- 3 балла выставляется студенту, если дано от 56 до 70% верных ответов;
- 2 балла выставляется студенту, если дано 41-55% верных ответов;
- 1 балл выставляется студенту, если дано от 20 до 40% верных ответов;
- <u>0</u> баллов выставляется студенту, если дано менее 20% правильных ответов;

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Амосов А.А., Дубинский Ю.А., Копченова Н.В. Вычислительные методы для инженеров. М.: Высш. шк., 2003. 596 с.
- 2. Калиткин Н.Н. Численные методы. М.: Наука, 1978. 512 с.
- 3. Ошибки при численных расчетах и особенности машинной арифметики. / Мет. ук. Сост. Закирьянов Ф.К. Уфа: РИО Баш Γ У, 2004. 24 с
- 4. Методические указания по решению прикладных задач на ЭВМ. / Сост. Закирьянов Ф.К. Уфа: РИО БашГУ, 1996. 24 с.

Дополнительная литература:

- 1. Петров И.Б., Лобанов А.И. Лекции по вычислительной математике. М.: БИНОМ. Лаборатория знаний, 2006. 523 с.
- 2. Ильина В.И., Силаев П.К. Численные методы для физиков-теоретиков. І. Москва-Ижевск: Институт компьютерных исследований, 2003. 132с.
- 3. Вержбицкий В.М. Основы численных методов. М.: Высш. шк., 2002. 840 с.
- 4. Каханер Д., Моулер К., Нэш С. Численные методы и математическое обеспечение. М.: Мир, 1998. 575 с.
- 5. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Лаборатория Базовых Знаний, 2001. –
- 6. Федоренко Р.П. Введение в вычислительную физику. М.: Изд-во Моск. физ.-техн. ин-та, 1994. 528 c.
- 7. Мудров А.Е. Численные методы для ПЭВМ на языках Бейсик, Фортран и Паскаль. Томск: МП «РАСКО», 1991. 272 с.
- 8. Мэтьюз Дж.Г., Финк К.Д. Численные методы. Использование MATLAB. М.: Издательский дом «Вильямс», 2001. 720 с.
- 9. Самарский А.А., Гулин А.В. Численные методы. M.: Hayka, 1989. 432 с.
- 10. Бахвалов Н.С., Лапин А.В., Чижонков Е.В. Численные методы в задачах и упражнениях. М.: Высш. шк., 2000.
- 11. Бейкер Дж., Грейвс-Моррис П. Аппроксимации Паде. М.: Мир, 1986.
- 12. Де Бор К. Практическое руководство по сплайнам. М.: Радио и связь, 1985.
- 13. Васильев Ф.П. Численные методы решения экстремальных задач. М.: Наука, 1980.
- 14. Гилл Ф., Мюррей У., Райт М. Практическая оптимизация. М.: Мир, 1985.
- 15. Демидович Б.П., Марон И.А. Основы вычислительной математики. М.: Наука, 1966.

5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины, включая профессиональные базы данных и информационные справочные системы

- 1. ЭБС издательства Лань https://e.lanbook.com/
- 2. Федеральный портал «Российское образование» http://www.edu.ru/
- 3. Российский портал «Открытого образования» https://openedu.ru/
- 4. Мир математических уравнений http://eqworld.ipmnet.ru/ru/library/mathematics/pde.htm

1. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине приведена в таблице:

Наименование специа- лизированных аудито- рий, кабинетов, лабораторий	Вид занятий	Наименование оборудования, программного обеспечения
1	2	3
Аудитория 02	Лекции	Мультимедийный проектор, экран, доска.
Аудитория 324, 224	Практические занятия	Доска, мел, сборники задач, калькулятор

ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО – ТЕХНИЧЕСКИЙ ИНСТИТУТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ¹

дисциплины «Численные методы и математическое моделирование» 6 семестр
(наименование дисциплины)
форма обучения

Вид работы	Объем дисциплины
Общая трудоемкость дисциплины (з.е. / часов)	2/72
Учебных часов на контактную работу с преподавателем:	32,2
лекций	32
практических/ семинарских	-
лабораторных	-
других (групповая, индивидуальная консультация и иные виды учебной	
деятельности, предусматривающие работу обучающихся с преподавателем)	
(ФКР)	0,2
из них, предусмотренные на выполнение курсовой работы / курсового	
проекта	-
Учебных часов на самостоятельную работу обучающихся (СР)	39,8
из них, предусмотренные на выполнение курсовой работы / курсового	
проекта	-
Учебных часов на подготовку к экзамену/зачету/дифференцированному за-	
чету (Контроль)	-

Форма(ы) контроля:

Зачет:6 семестр

6 семестр

№ п/п	Тема и содержание	ции, п нарск работь	работы, самостоятельная работа и трудоемкость (в часах)		ии, практические занятия, семинарские занятия, лабораторные аботы, самостоятельная работа и трудоемкость (в часах) Основная и дополнительная литература, рекомендуемая студентам (номера		Задания по самостоя- тельной работе сту- дентов	Форма текущего контроля успеваемости (коллоквиумы, контрольные работы, компьютерные тесты и т.п.)
1	2	3	4	5	6	7	8	9
1	Введение. Основные этапы решения физической задачи с применением компьютера. Источники и классификация погрешностей результата численного решения задачи. Особенности машинной арифметики. Обусловленность и корректность задачи, и устойчивость численного алгоритма. Классификация вычислительных методов	1	1	4		[1] гл. 1-3, [2] гл. 1 [5] лекция 1 [8] гл. 2	Задания для самом- тоятельной работы из [3]	Лабораторная работа Тестирование доклад
2	Численные методы линейной алгебры. Постановка задачи. Структура матриц. Норма вектора и матрицы. Число обусловленности. Оценка погрешности. Решение систем линейных алгебраических уравнений. Метод исключения Гаусса. Выбор ведущего элемента. Метод Гаусса- Жордана. LR-разложение матрицы. Метод прогонки решения трехдиагональных систем.	1	1	6	1	[1] гл. 5 [2] гл. 5 [4] тема 2 [5] лекция 2 [8] гл. 3		Лабораторная работа Тестирование доклад
3	Итерационные методы решения. Теорема о сходимости метода последовательных приближений. Метод Якоби. Априорная и апостериорная оценки точности полученного решения на N-ой итерации. Метод Зейделя. Метод последовательной верхней релаксации.	2	2	4	1	[1] гл. 6, [2] гл. 5 [4] тема 2, [5] лек- ция 2, [8] гл. 3		Лабораторная работа Тестирование доклад
4	Нхождение нулей функции. Методы бисекции, Ньютона, секущих и оценка скорости их сходимости. Метод простой итерации.	2	2	4	1	[1] гл.4, [2] гл. 5 [4] тема 1, [5] лек- ция 5, [8] гл. 7		Лабораторная работа Тестирование доклад
5	Решение систем нелинейных уравнений. Метод простой итерации, метод Ньютона с модификациями. Связь между задачей нахождения экстремумов функции и решением системы нелинейных уравнений	2	2	6	1	[1] гл. 7, [2] гл.5 [4] тема 3, [5] лек- ция 5, [8] гл. 7		Лабораторная работа Тестирование доклад
6	Поиск минимума функции одной переменной. Алгоритм золотого сечения. Метод Ньютона, метод секущих.	1	1	4	1	[1] гл. 9, [2] гл. 7 [4] тема 4, [5] лек- ция 4, [8] гл. 9		Лабораторная работа Тестирование доклад
7	Минимум функции нескольких переменных. Спуск по координатам. Градиентный спуск. Наискорейший спуск. Динамический метод поиска многомерного минимума.	2	2	2	1	[1] гл. 10, [2] гл. 7 [4] тема 5, [5] лек- ция 4, [8] гл. 9		Лабораторная работа Тестирование доклад
8	Интерполяция. Кусочно-линейная интерполяция. Полиномиальная интерполяция. Интерполяционные многочлены в форме Ньютона и Лагранжа. Многочлены Чебышёва.	1	1	4	1	[1] гл. 11, [2] гл. 2 [4] тема 6, [5] лек- ция 6, [8] гл. 4		Лабораторная работа Тестирование Доклад
9	Сплайн-интерполяция. Параболическая и кубическая сплайн-интерполяция. Экстраполяция. Двумерная и трехмерная интерполяция. Метод наименьших квадратов.	2	1	4	1	[1] гл. 11, [2] гл. 2, [4] тема 6, [5] лек- ции 3, 6, [8] гл. 4, 6		Лабораторная работа Тестирование Доклад
10	Формулы прямоугольников, трапеций и Симпсона и оценка их точности. Квадратурные формулы наивысшей степени точности. Формулы Гаусса.	1	1	4	1	[1] гл. 13, [2] гл. 4 [4] тема 7, [5] лек- ция 7, [8] гл. 5		Лабораторная работа Тестирование Доклад
11	Интегрирование функций двух и более переменных. Применение методов Монте- Карло для вычисления многомерных интегралов. Экстраполяция Ричардсона. Не- собственные интегралы. Адаптивные программы для вычисления интегралов	1	2	2	1	[1] гл. 13, [2] гл. 4 [4] тема 7, [5] лек- ция 7, [8] гл. 5		Лабораторная работа Тестирование Доклад
	Всего часов:	16	16	48	10			

Рейтинг-план дисциплины

Численные методы и математическое моделирование (название дисциплины согласно рабочему учебному плану)

направление «Физика» курс 4, семестр 8

Виды учебной деятельности сту-	Балл за кон-	Число зада-	Баллы		
дентов	кретное зада-	ний за се-	Минимальный	Максимальный	
	ние	местр			
Модуль	1				
Текущий контроль					
1. Опрос	10	1	0	10	
2. Доклад	15	1	0	15	
Рубежный контроль					
Тестирование	1	25	0	25	
Модуль	2				
Текущий контроль					
1. Опрос	10	1	0	10	
2. Доклад	15	1	0	15	
Рубежный контроль					
Тестирование	1	25	0	25	
Поощрительны	е баллы				
1. Студенческая олимпиада	3	1	0	3	
2. Публикация статей	3	1	0	3	
3. Работа со школьниками (кружок,	4	1	0	4	
конкурсы, олимпиады)					
4					
Посещаемость (балл	ы вычитаются	из общей сумм	ы набранных балл	ов)	
1. Посещение лекционных за- нятий			0	-6	
2. Посещение практических (семинарских, лабораторных занятий)			0	-10	
Итоговый ког	троль	•			
1. Зачет					

Форма экзаменационного билета

ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО – ТЕХНИЧЕСКИЙ ИНСТИТУТ КАФЕДРА ТЕОРЕТИЧЕСКОЙ ФИЗИКИ

ЭКЗАМЕНАЦИОННЫЙ БИЛЕТ № 1 по дисциплине

Численные методы и математическое моделирование

Направление подготовки (специальность) 03.03.02 Физика

Направленность (профиль) подготовки / Специализация **Медицинская физика**

- 1. Решение обыкновенных дифференциальных уравнений. Устойчивые и неустойчивые уравнения. Собственные значения и матрица Якоби. Жесткие задачи.
- 2. Решение систем линейных алгебраических уравнений. Проблемы реализации метода Гаусса. Вектор ошибки и невязка. Число обусловленности матрицы.

	2	
Завелующий кафелрой	vaen	Вахитов Р М