# МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО - ТЕХНИЧЕСКИЙ ИНСТИТУТ

Утверждено: на заседании кафедры протокол от «24» июня 2021 г. № 5

Согласовано: Председатель УМК физикотехнического ин-ститута

Балапанов М.Х./\_\_\_\_\_

Зав. кафедрой Шарипов Т.И. /\_\_\_\_\_

#### РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

дисциплина Компьютерное моделирование в радиотехнических и биофизических системах. Решение задач по радиофизике

(наименование дисциплины)

#### Профессиональный цикл ФТД.В.01, вариативная часть

(Цикл дисциплины и его часть (базовая, вариативная, дисциплина по выбору))

#### программа магистратуры

Направление подготовки (специальность) 03.04.03 Радиофизика

(код и наименование направления подготовки (специальности))

Направленность (профиль) подготовки «Цифровые технологии обработки информации»

(наименование направленности (профиля) подготовки)

## Квалификация **Магистр**

Разработчики (составители) профессор, д.хим.н.

<u>старший преподаватель</u> (должность, ученая степень, ученое звание)

/ Доломатов М.Ю./

/Латыпов К.Ф./ (подпись, Фамилия И.О.)

Для приема: 2021 г.

Уфа 2021г.

# Составитель / составители: <u>профессор, д.хим.н. Доломатов М.Ю..,</u> <u>старший преподаватель Латыпов К.Ф.</u>

Рабочая программа дисциплины утверждена на заседании кафедры протокол от «25» июня 2021 г.  $\mathbb{N}_2$  5

Заведующий кафедрой

/ Т.И. Шарипов

# СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ ДИСЦИПЛИНЫ

|            | Перечень планируемых результатов обучения по дисциплине,     |        |
|------------|--------------------------------------------------------------|--------|
| 1.         | соотнесенных с планируемыми результатами освоения образо-    | 4      |
|            | вательной программы (с ориентацией на карты компетенций).    |        |
| 2.         | Место дисциплины в структуре образовательной программы.      | 5      |
|            | Содержание рабочей программы (объем дисциплины, типы и       |        |
| 3.         | виды учебных занятий, учебно-методическое обеспечение са-    | 6 (25) |
|            | мостоятельной работы обучающихся) Приложение № 1             |        |
| 4.         | Фонд оценочных средств по дисциплине                         | 6      |
|            | Перечень компетенций с указанием этапов их формирования в    |        |
| 4.1.       | процессе освоения образовательной программы. Описание по-    | 6      |
| 4.1.       | казателей и критериев оценивания компетенций на различных    | U      |
|            | этапах информирования, описание шкал оценивания              |        |
|            | Типовые контрольные задания или иные материалы, необходи-    |        |
|            | мые для оценки знаний, умений, навыков и опыта деятельности, |        |
|            | характеризующих этапы формирования компетенций в про-        |        |
| 4.2.       | цессе освоения образовательной программы. Методические ма-   | 8      |
|            | териалы, определяющие процедуры оценивания знаний, уме-      |        |
|            | ний, навыков и опыта деятельности, характеризующих этапы     |        |
|            | формирования компетенций                                     |        |
| 4.3.       | Рейтинг-план дисциплины (Приложение № 2)                     | 15(26) |
| 5.         | Учебно-методическое и информационное обеспечение дисци-      | 15     |
| <i>J</i> . | плины                                                        | 13     |
| 5.1.       | Перечень основной и дополнительной учебной литературы, не-   | 15     |
| J.1.       | обходимой для освоения дисциплины.                           | 15     |
|            | Перечень ресурсов информационно-телекоммуникационной         |        |
| 5.2.       | сети «Интернет» и программного обеспечения, необходимых      | 16     |
|            | для освоения дисциплины.                                     |        |
| 6.         | Материально-техническая база, необходимая для осуществле-    | 16     |
|            | ния образовательного процесса по дисциплине                  | 10     |
|            |                                                              |        |

**1.** Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы Процесс изучения дисциплины направлен на формирование элементов следующих компетенций в соответствии с ФГОС ВО и ОП ВО по данному направлению подготовки:

**ОК-2** готовность действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения

**ОК-3** готовностью к саморазвитию, самореализации, использованию творческого потенциала

**ОПК-4** способность к свободному владению профессионально-профилированными знаниями в области информационных технологий, использованию современных компьютерных сетей, программных продуктов и ресурсов информационно-телекоммуникационной сети "Интернет" (далее - сеть "Интернет") для решения задач профессиональной деятельности, в том числе находящихся за пределами профильной подготовки

**ПК-2** способность самостоятельно ставить научные задачи в области физики и радиофизики и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта

**ПК-3** способностью применять на практике навыки составления и оформления научно-технической документации, научных отчетов, обзоров, докладов и статей

| Результаты обу | чения                       | Формируемая     | Примечания |
|----------------|-----------------------------|-----------------|------------|
|                |                             | компетенция (с  | _          |
|                |                             | указанием кода) |            |
| Знания         | 1. Знать специфику науч-    | ОК-2            |            |
|                | ного знания, его отличия от |                 |            |
|                | обыденного знания, основ-   |                 |            |
|                | ные проблемы современной    |                 |            |
|                | науки и приемы самообразо-  |                 |            |
|                | вания                       |                 |            |
|                | 2. Знать информационные     | ОПК-4           |            |
|                | базы данных сети Интернет   |                 |            |
|                | по спектрам поглощения из-  |                 |            |
|                | лучения органических моле-  |                 |            |
|                | кул                         |                 |            |
|                | 3. Знать принципы планиро-  | ОК-3            |            |
|                | вания личного времени, спо- |                 |            |
|                | собы и методы саморазви-    |                 |            |
|                | тия и самообразования;      |                 |            |
|                | 4. Знать правила работы с   | ПК-2            |            |
|                | осциллографом, генерато-    |                 |            |
|                | ром импульсов               |                 |            |
|                | 5. Знать правила составле-  | ПК-3            |            |
|                | ния и оформления отчёта о   |                 |            |
|                | проделанной работе          |                 |            |

| Умения        | 1. Уметь приобретать систе-  | ОК-2  |   |
|---------------|------------------------------|-------|---|
|               | матические знания по пред-   |       |   |
|               | мету, определять проблему,   |       |   |
|               | ставить цели, отделять глав- |       |   |
|               | ное от второстепенного, раз- |       |   |
|               | делять трудную задачу на     |       |   |
|               | более простые                |       |   |
|               | 2. Уметь находить справоч-   | ОПК-4 |   |
|               | ные данные по потенциалам    |       |   |
|               | ионизации, сродству к элек-  |       |   |
|               | трону, спектрам поглощения   |       |   |
|               | различных биологических      |       |   |
|               | молекул в сети Интернет,     |       |   |
|               | пользоваться расширенным     |       |   |
|               | поиском                      |       |   |
|               | 3. Уметь самостоятельно      | ОК-3  | 1 |
|               | осваивать знания и навыки в  |       |   |
|               | профессиональной деятель-    |       |   |
|               | ности, правильно оценивать   |       |   |
|               | свои силы, ставить цели и    |       |   |
|               | выполнять их                 |       |   |
|               | 4. Уметь работать на спек-   | ПК-2  |   |
|               | трофотометре СФ-2000,        |       |   |
|               | цифровых аналитических       |       |   |
|               | весах                        |       |   |
|               | 5. Уметь составлять отчёт о  | ПК-3  |   |
|               | проделанной работе, гра-     |       |   |
|               | мотно описать результаты     |       |   |
|               | эксперимента                 |       |   |
| Владения      | 1. Владеть понятийным ап-    | ОК-2  |   |
| (навыки/опыт  | паратом, навыками науч-      |       |   |
| деятельности) | ного анализа и методоло-     |       |   |
|               | гией научного подхода в      |       |   |
|               | научно-исследовательской и   |       |   |
|               | практической деятельности,   |       |   |
|               | навыками приобретения        |       |   |
|               | умений и знаний              |       |   |
|               | 2. Владеть навыками ис-      | ОПК-4 |   |
|               | пользования программы        |       |   |
|               | HyperChem и онлайн кон-      |       |   |
|               | структоров молекул в сети    |       |   |
|               | Интернет для моделирова-     |       |   |
|               | ния нанообъектов             |       |   |
|               | 3. Владеть навыками ис-      | ПК-1  |   |
|               | пользования творческого      |       |   |

| потенциала для разработки  |      |  |
|----------------------------|------|--|
| новых устройств автомати-  |      |  |
| зации.                     |      |  |
| 4. Владеть способностью    | ПК-2 |  |
| понимать и обрабатывать    |      |  |
| электронные спектры погло- |      |  |
| щения                      |      |  |
| 5. Владеть программными    | ПК-3 |  |
| пакетом MS Office или Open |      |  |
| Office                     |      |  |

## 2. Место дисциплины в структуре основной образовательной программы

Дисциплина «Компьютерное моделирование в радиотехнических и биофизических системах. Решение задач по радиофизике» является факультативом ФГОС-3 по направлению подготовки 030303 «Радиофизика».

Целью изучения дисциплины «Компьютерное моделирование в радиотехнических и биофизических системах. Решение задач по радиофизике» является освоение студентами навыков расчёта и моделирования физических процессов, происходящих в радиотехнических и биофизических системах, а также решение задач по радиофизике, связанных с осуществлением данного моделирования.

Учебная дисциплина предусматривает привлечение знаний из различных разделов общей и теоретической физики, способствуя углубленному пониманию физических процессов, протекающих в радиотехнических и биофизических системах. Изучение данной дисциплины базируется на следующих курсах (разделах курсов): 1) молекулярная физика; 2) физические основы наноэлектроники; 3) методы моделирования в наноматериалах; 4) квантовая теория.

# 3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

Содержание рабочей программы представлено в Приложении № 1.

- 4. Фонд оценочных средств по дисциплине
- 4.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

**ОК-2** готовность действовать в нестандартных ситуациях, нести социальную и этическую ответственность за принятые решения

| Этапы фор-                     | Планируемые ре-                                                                           | Крит                                                                                                     | Критерии оценивания результатов обучения                           |                                                |           |  |
|--------------------------------|-------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|------------------------------------------------|-----------|--|
| мирования<br>компетен-<br>ций  | зультаты обучения (показатели дости- жения заданного уровня освоения компетенций)         | «Не удовлетво-<br>рительно»                                                                              | «Удовлетворительно»                                                |                                                |           |  |
| Первый                         | Знать: методиче- ские подходы к                                                           | Показывает пол-                                                                                          | Имеет значи-                                                       | Знает почти                                    | Знает всё |  |
| этап<br>(начальный<br>уровень) | подготовке и принятию решений при анализе радиофизических задач в нестандартных ситуациях | ное незнание материала или имеет фрагментарные знания небольшой части материала, допускает грубые ошибки | тельные пробелы в знаниях, допускает существенные ошибки в ответах | всё, допускает незначительные ошибки в ответах |           |  |
| Второй                         | Уметь:                                                                                    | Не умеет                                                                                                 | Умеет, но                                                          | Умеет,                                         | Умеет в   |  |

| этап (базо-<br>вый уро-<br>вень) | находить решения<br>нетривиальных ра-<br>диофизических за-<br>дач |                        | допускает зна-<br>чительные<br>ошибки                   | допускает не-<br>значительные<br>ошибки  | совершен-              |
|----------------------------------|-------------------------------------------------------------------|------------------------|---------------------------------------------------------|------------------------------------------|------------------------|
| Третий этап (повышенный уровень) | Владеть:<br>навыками абстракт-<br>ного мышления                   | Практически не владеет | Владеет слабо,<br>допускает зна-<br>чительные<br>ошибки | Владеет, допускает незначительные ошибки | Владеет в совершенстве |

# **ОК-3** готовностью к саморазвитию, самореализации, использованию творческого потенциала

| Этапы фор-                                  | Планируемые ре-                                                                                                                            | Кри                                                                                                                    | терии оценивания                                                              | результатов обучен                                         | <b>Р</b>               |
|---------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|------------------------|
| мирования<br>компетен-<br>ций               | зультаты обучения (показатели достижения заданного уровня освоения компетенций)                                                            | «Не удовле-<br>творительно»                                                                                            | Z»                                                                            | <sup>у</sup> довлетворительно                              | »                      |
| Первый этап (начальный уровень)             | Знает принципы планирования личного времени, способы и методы саморазвития и самообразования                                               | Показывает полное незнание материала или имеет фрагментарные знания небольшой части материала, допускает грубые ошибки | Имеет значительные пробелы в знаниях, допускает существенные ошибки в ответах | Знает почти всё, допускает незначительные ошибки в ответах | Знает всё              |
| Второй<br>этап (базо-<br>вый уро-<br>вень)  | Умеет самостоятельно осваивать знания и навыки в профессиональной деятельности, правильно оценивать свои силы, ставить цели и выполнять их | Не умеет                                                                                                               | Умеет, но допускает значительные ошибки                                       | Умеет, допускает незначительные ошибки                     | Умеет в совершенстве   |
| Третий<br>этап (повы-<br>шенный<br>уровень) | Владеет навыками использования творческого потенциала для разработки новых устройств автоматизации.                                        | Практически<br>не владеет                                                                                              | Владеет слабо,<br>допускает зна-<br>чительные<br>ошибки                       | Владеет, допускает незначительные ошибки                   | Владеет в совершенстве |

ОПК-4 способность к свободному владению профессионально-профилированными знаниями в области информационных технологий, использованию современных компьютерных сетей, программных продуктов и ресурсов информационно-телекоммуникационной сети "Интернет" (далее - сеть "Интернет") для решения задач профессиональной деятельности, в том числе находящихся за пре-

делами профильной подготовки

| Этапы фор-                    | Планируемые резуль-                                            | Критерии оценивания результатов обучения |                     |  |
|-------------------------------|----------------------------------------------------------------|------------------------------------------|---------------------|--|
| мирования<br>компетен-<br>ций | таты обучения (показатели достижения заданного уровня освоения | «Не удовле-<br>творительно»              | «Удовлетворительно» |  |

|                                            | компетенций)                                                                                                                                                                                                      |                                                                                                                        |                                                                               |                                                            |                        |
|--------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|------------------------|
| Первый этап (начальный уровень)            | Имеет знания информационных баз данных сети Интернет по спектрам поглощения излучения органических молекул                                                                                                        | Показывает полное незнание материала или имеет фрагментарные знания небольшой части материала, допускает грубые ошибки | Имеет значительные пробелы в знаниях, допускает существенные ошибки в ответах | Знает почти всё, допускает незначительные ошибки в ответах | Знает всё              |
| Второй<br>этап (базо-<br>вый уро-<br>вень) | Показывает сформированные умения находить справочные данные по потенциалам ионизации, сродству к электрону, спектрам поглощения различных биологических молекул в сети Интернет, пользоваться расширенным поиском | Не умеет                                                                                                               | Умеет, но допускает значительные ошибки                                       | Умеет, допускает незначительные ошибки                     | Умеет в совершенстве   |
| Третий этап (повышенный уровень)           | Владеет навыками использования программы HyperChem и онлайн конструкторов молекул в сети Интернет для моделирования нанообъектов приобретения умений и знаний                                                     | Практически не владеет                                                                                                 | Владеет слабо,<br>допускает зна-<br>чительные<br>ошибки                       | Владеет, допускает незначительные ошибки                   | Владеет в совершенстве |

**ПК-2** способность самостоятельно ставить научные задачи в области физики и радиофизики и решать их с использованием современного оборудования и новейшего отечественного и зарубежного опыта

| Этапы фор-                          | Планируемые ре-                                                                            | Кр                                                                                                                     | итерии оценивани                                                              | я результатов обуч                                         | ения                  |
|-------------------------------------|--------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|-----------------------|
| мирования<br>компетен-<br>ций       | зультаты обучения (показатели дости-<br>жения заданного<br>уровня освоения<br>компетенций) | «Не удовле-<br>творительно»                                                                                            | «Удовлетворительно»                                                           |                                                            |                       |
| Первый этап (начальный уровень)     | Знает правила работы с осциллографом, генератором импульсов                                | Показывает полное незнание материала или имеет фрагментарные знания небольшой части материала, допускает грубые ошибки | Имеет значительные пробелы в знаниях, допускает существенные ошибки в ответах | Знает почти всё, допускает незначительные ошибки в ответах | Знает всё             |
| Второй этап<br>(базовый<br>уровень) | Умеет работать на спектрофотометре СФ-2000, цифровых аналитических весах                   | Не умеет                                                                                                               | Умеет, но допускает значительные ошибки                                       | Умеет, допускает незначительные ошибки                     | Умеет в совер-шенстве |
| Третий этап                         | Владеет                                                                                    | Практически                                                                                                            | Владеет слабо,                                                                | Владеет,                                                   | Владеет в             |

| (повышен- | способностью пони-                  | не владеет | допускает зна- | допускает не- | совершенстве |
|-----------|-------------------------------------|------------|----------------|---------------|--------------|
| ный уро-  | мать и обрабатывать                 |            | чительные      | значительные  |              |
| вень)     | электронные спек-<br>тры поглошения |            | ошибки         | ошибки        |              |
|           | тры поглощения                      |            |                |               |              |

**ПК-3** способностью применять на практике навыки составления и оформления научно-технической документации, научных отчетов, обзоров, докладов и статей

| Этапы фор-                      | Планируемые ре-                                                                                                    | Кр                                                                                                                     | итерии оценивани                                                              | я результатов обу                                          | чения                                       |
|---------------------------------|--------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|------------------------------------------------------------|---------------------------------------------|
| мирования<br>компетен-<br>ций   | зультаты обучения (показатели дости- жения заданного уровня освоения компетенций)                                  | «Не удовле-<br>творительно»                                                                                            | «Удовлетворительно»                                                           |                                                            |                                             |
| Первый этап (начальный уровень) | Знать: правила со-<br>ставления и оформ-<br>ления отчёта о про-<br>деланной работе                                 | Показывает полное незнание материала или имеет фрагментарные знания небольшой части материала, допускает грубые ошибки | Имеет значительные пробелы в знаниях, допускает существенные ошибки в ответах | Знает почти всё, допускает незначительные ошибки в ответах | Знает всё                                   |
| Второй этап                     | Уметь: составлять отчёт о проделанной работе, грамотно описать результаты эксперимента Владеть: программными паке- | Практически                                                                                                            | Умеет, но допускает значительные ошибки  Владеет слабо,                       | Умеет, допускает незначительные ошибки Владеет, до-        | Умеет в совер-<br>шенстве  Владеет в совер- |
| (базовый<br>уровень)            | том MS Office или<br>Open Office                                                                                   | не владеет                                                                                                             | допускает зна-<br>чительные<br>ошибки                                         | пускает незна-<br>чительные<br>ошибки                      | шенстве                                     |

4.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций

| Этапы осво- | Результаты обучения                   | Компетенция   | Оценочные средства      |
|-------------|---------------------------------------|---------------|-------------------------|
| ения        |                                       |               | _                       |
| 1-й этап    | Знать: методические подходы к подго-  | ОК-2,ОК-3,ПК- | Тест, письменная работа |
|             | товке и принятию решений при анализе  | 3             |                         |
| Знания      | радиофизических задач в нестандартных |               |                         |
|             | ситуациях                             |               |                         |
|             | Знать: информационные базы данных     |               |                         |
|             | сети Интернет по спектрам поглощения  |               |                         |
|             | излучения органических молекул        |               |                         |
|             | Знать: правила составления и оформле- |               |                         |
|             | ния отчёта о проделанной работе       |               |                         |
| 2-й этап    | Уметь: находить решения нетривиаль-   | ОК-2, ОПК-2   | Контрольная работа      |
|             | ных радиофизических задач. Уметь:     |               |                         |

| Vivoring | VALUE TIME AND AND AND AND THE HOME    |       |                     |
|----------|----------------------------------------|-------|---------------------|
| Умения   | находить справочные данные по потен-   |       |                     |
|          | циалам ионизации, сродству к элек-     |       |                     |
|          | трону, спектрам поглощения различных   |       |                     |
|          | биологических молекул в сети Интернет, |       |                     |
|          | пользоваться расширенным поиском       |       |                     |
|          | 2. Уметь:                              | ПК-2  | Тест                |
|          | работать на спектрофотометре СФ-2000,  |       |                     |
|          | цифровых аналитических весах           |       |                     |
|          | 3. Уметь:                              | ПК-3  | Письменная работа   |
|          | составлять отчёт о проделанной работе, |       |                     |
|          | грамотно описать результаты экспери-   |       |                     |
|          | мента                                  |       |                     |
| 3-й этап | Владеть:                               | OK-2, | Контрольная работа  |
|          | навыками абстрактного мышления         |       |                     |
| Владеть  | 2. Владеть:                            | ПК-2  | Контрольная работа, |
| навыками | навыками использования программы       |       | тест                |
|          | HyperChem и онлайн конструкторов мо-   |       |                     |
|          | лекул в сети Интернет для моделирова-  |       |                     |
|          | ния нанообъектов. Владеть:             |       |                     |
|          | способностью понимать и обрабатывать   |       |                     |
|          | электронные спектры поглощения         |       |                     |

# Пакет оценочных средств для 3 семестра

# Примеры контрольных работ для проверки знаний:

Контрольная работа №1

#### Вариант 1.

- 1. Напишите основные формулы для решения задач по теме «постоянный электрический ток»
- 2. Определите ёмкость коаксиального кабеля длиной 10м, если радиус его центральной жилы  $r_1$ =1см, радиус оболочки  $r_2$ =1,5см, а изоляционным материалом служит резина ( $\epsilon$ =2,5)

# Вариант 2.

- 1. Напишите основные формулы для решения задач по теме «переменный электрический ток»
- 2. Ёмкость батареи конденсаторов, образованной двумя последовательно соединёнными конденсаторами, С=100пФ, а заряд Q=20нКл. Определите ёмкость второго конденсатора, а также разность потенциалов на обкладках каждого конденсатора, если  $C_1$ =200пФ.

# Контрольная работа №2

#### Вариант 1.

- 1. Напишите основные формулы для решения задач по теме «магнитное поле»
- 2. Вольтметр, включенный в сеть последовательно с сопротивлением  $R_1$ , показал  $U_1$ =198B, а при включении последовательно с сопротивлением  $R_2$ =2 $R_1$  показал  $U_2$ =180B. Определите сопротивление  $R_1$  и напряжение в сети, если

сопротивление вольтметра r=900Ом.

# Вариант 2.

- 1. Напишите основные формулы для решения задач по теме «электромагнитная индукция»
- 2. Сила тока в проводнике сопротивлением R=100 Ом равномерно убывает от  $I_0=10$ А до I=0 за время t=30с. Определите выделившееся за это время в проводнике количество теплоты.

# Описание методики оценивания контрольных работ:

- 5 баллов выставляется студенту, если дан верный ответ на теоретический вопрос, задача решена абсолютно верно;
- 4 балла выставляется студенту, если на теоретический вопрос в целом дан верный ответ, а в задаче при верном решении в общем виде допущена ошибка в числовых расчетах или при правильном ответе опущены некоторые промежуточные этапы решения или допущена непринципиальная ошибка в исходных уравнениях;
- 3 балла выставляется студенту, если в решении задачи отсутствует одно из необходимых исходных уравнений или допущена принципиальная ошибка в исходных уравнениях, но присутствуют правильные рассуждения и действия, направленные на получение ответа(задача решена наполовину), ответ на теоретический вопрос дан верно не менее чем на 50%
- 1-2 балла выставляется студенту, если верно записана только часть необходимых исходных уравнений, при этом отсутствуют какие-либо математические преобразования, направленные на получение ответа или они ошибочны, на теоретический вопрос не дан правильный ответ.

# Примеры заданий для проведения теста

1. Два параллельно соединенных резистора соединены последовательно с третьим, сопротивление каждого R. Общее сопротивление равно:

1) 
$$\frac{3}{2}R$$
 2)  $\frac{2}{3}R$  3)  $\frac{2+R^2}{R}$  4) 3R

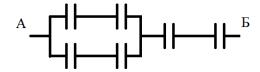
2. Полное сопротивление цепи переменного тока определяется по формуле : 1.  $Z = \sqrt{R^2 + (R_L - R_C)}$  2.  $Z = \sqrt{R^2 + R_C^2 + R_C^2}$  3.  $Z = \sqrt{R^2 + R_C^2 - R_C^2}$  4.  $Z = \sqrt{R^2 + R_C^2 - R_C^2}$ 

$$\sqrt{R+R^2+R^2}_L + \frac{R^2}{C}.$$

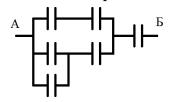
3. Скорость распространения электромагнитных волн в некоторой среде составляет  $\nu$ =250 Mm/c. Определите длину волны электромагнитных волн в этой среде, если их частота в вакууме  $\nu_0$ =1 МГц.

1. 250м 2. 0,04м. 3. 25м. 4. 0,4м.

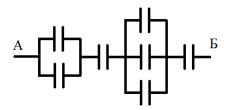
- 4. В вакууме вдоль оси х распространяется электромагнитная волна. Амплитуда напряжённости электрического поля волны равна 10В/м. Определите амплитуду напряженности магнитного поля волны:
  - 1.26,5 MA/M
- 2.265 MA/M
- 3.0.037 mA/m
- 4. 37 MA/M.
- 5. Разность потенциалов зарядной станции 20 В. Внутреннее сопротивление аккумулятора, включенного на зарядку, равно 1,6 Ом; вначале его остаточная ЭДС равна 12 В. Какая мощность будет потрачена станцией для зарядки аккумулятора?
  - 1. 100 Вт
- 2. 200 B<sub>T</sub>
- 3. 1600 B<sub>T</sub>
- 4. 1,6BT


#### Описание методики оценивания тестов:

- 5 баллов выставляется студенту, если задача решена абсолютно верно;
- 4 балла выставляется студенту, если при верном решении в общем виде допущена ошибка в числовых расчетах или при правильном ответе опущены некоторые промежуточные этапы решения или допущена непринципиальная ошибка в исходных уравнениях;
- 3 балла выставляется студенту, если отсутствует одно из необходимых исходных уравнений или допущена принципиальная ошибка в исходных уравнениях, но присутствуют правильные рассуждения и действия, направленные на получение ответа(задача решена наполовину);
- 1-2 балла выставляется студенту, если верно записана только часть необходимых исходных уравнений, при этом отсутствуют какие-либо математические преобразования, направленные на получение ответа или они ошибочны.


Итоговая оценка знаний студента по дисциплине производится согласно его работе в течение всего 3 семестра и ответа на билет в ходе сдачи зачёта. В первую очередь, это означает, что для допуска к зачёту студент должен написать все контрольные работы и тесты не менее чем на оценку «удовлетворительно».

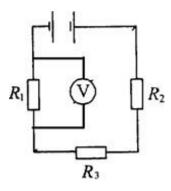
# Вопросы для проведения зачёта, 3 семестр


1) вычислите суммарную ёмкость батареи конденсаторов, ёмкость каждого кон-денсатора 2мк $\Phi$ 

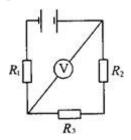


2) вычислите суммарную ёмкость батареи конденсаторов, ёмкость каждого кон-денсатора 1н $\Phi$ 

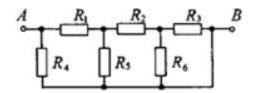



3) вычислите суммарную ёмкость батареи конденсаторов, ёмкость каждого конденсатора 3мкФ

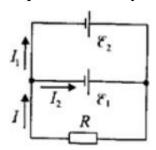



**4)** На рисунке контур из медной проволоки. Длина каждой из сторон равна **1см.** Определите общее сопротивление контура между точками **A** и **Б**, если поперечное сечение проволоки **1мм²**, а удельное сопротивление меди **0,0175 Ом\*мм²/м** 

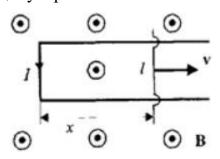



- 5) Плотность электрического тока в медном проводе равна 10 A/см<sup>2</sup>. Определите удельную тепловую мощность тока, если удельное сопротивление меди ро=17нОм\*м.
- 6) В цепь, состоящую из батареи и резистора сопротивлением R=80м, включают вольтметр, сопротивление которого  $R_v=800$  Ом, один раз последовательно резистору, другой раз параллельно. Определите внутреннее сопротивление батареи, если показания вольметра в обоих случаях одинаковы.
- 7) Силы тока в проводнике сопротивлением R=100 Ом равномерно убывает от  $I_0=10$ A до I=0 за время t=30с. Определите выделившееся за это время в проводнике количество теплоты.
- 8) На рисунке  $R_1=R_2=R_3=100$  Ом. Вольтметр показывает  $U_v=200B$ , сопротивление вольтметра  $R_v=800$ Ом. Определите ЭДС батареи, пренебрегая её сопротивлением.




- 9) Проволочная пирамида с одинаковыми гранями стоит на металлической подставке. Что покажет омметр, если его подключить к подставке и вершине пирамиды? Сопротивление каждой грани = 1 Ом.
- 10) Определить ток короткого замыкания источника ЭДС, если при внешнем сопротивлении  $R_1 = 50$  Ом тока в цепи  $I_1 = 0.2$  А, а при  $R_2 = 110$  Ом  $-I_2 = 0.1$  А.
- 11) Определите ЭДС и внутреннее сопротивление г источника тока, если во внешней цепи при силе тока 4 А развивается мощность 10 Вт, а при силе тока 2 А мощность 8 Вт.
- 12) Электрическая плита мощностью 1 кВт с нихромовой спиралью предназначена для включения в сеть с напряжением 220 В. Сколько метров проволоки диаметром 0,5 мм надо взять для изготовления спирали, если температура нити равна 900 °C? Удельное сопротивление нихрома при 0°С  $\rho_0 = 1$  мкОм\*м, а температурный коэффициент сопротивления  $\alpha = 0.4 \cdot 10^{-3}$ .
- 13) В цепи на рисунке амперметр показывает силу тока I = 1,5 А. Сила тока через сопротивление  $R_1$  равна  $I_1 = 0,5$  А. Сопротивление  $R_2 = 2$  Ом,  $R_3 = 6$  Ом. Определите сопротивление  $R_1$ , а также силу ток  $I_2$  и  $I_3$ , протекающих через сопротивление  $R_2$  и  $R_3$ .
- 14) Вольтметр, включенный в сеть последовательно с сопротивлением  $R_1$ , показал напряжение  $U_1=198~B$ , а при включении последовательно с сопротивлением  $R_2=2R_1$  показал  $U_2=180~B$ . Определите сопротивление  $R_1$  и напряжение в сети, если сопротивление вольтметра r=900~Oм.
- 15) На рисунке  $R_1 = R_2 = R_3 = 100$  Ом. Вольтметр показывает  $U_V = 200$  В, сопротивление вольтметра  $R_V = 800$  Ом. Определите ЭДС батареи, пренебрегая её сопротивлением.




16) Определите общее сопротивление между точками A и B цепи, представленной на рисунке, если  $R_1 = 1$  Ом,  $R_2 = 3$  Ом,  $R_3 = R_4 = R_6 = 2$  Ом,  $R_5 = 4$  Ом.



17) Два источника тока с ЭДС  $\epsilon_1 = 2$  В и  $\epsilon_2 = 1,5$  В и внутренними сопротивлениями  $r_1 = 0,5$  Ом и  $r_2 = 0,4$  Ом включены параллельно сопротивлению R = 2 Ом. Определить силу тока через это сопротивление.



- 18) Кольцо из алюминиевого провод ( $\rho = 26 \, \text{нОм*м}$ ) помещено в магнитное поле перпендикулярно линиям магнитной индукции. Диаметр кольца  $D = 30 \, \text{см}$ , диаметр провода  $d = 2 \, \text{мм}$ . Определите скорость изменения магнитного поля, если ток в кольце  $I = 1 \, \text{A}$ .
- 19) В однородное магнитное поле с индукцией B = 0.3 Тл помещена прямоугольная рамка с подвижной стороной, длина которой l = 15 см. Определите ЭДС индукции, возникающей в рамке, если ее подвижная сторона перемещается перпендикулярно линиями магнитной индукции со скоростью v = 10 м/с.



- 20) В катушке длиной 1 = 0.5 м, диаметром d = 5 см и числом витков N = 1500 ток равномерно увеличивается на 0.2 А за одну секунду. На катушку надето кольцо из медной проволоки ( $\rho = 17$  нОм\*м) площадью сечения  $S_{\kappa} = 3$  мм². Определите силу тока в кольце.
- 21) Катушка диаметром d=2 см, содержащая один слой плотно прилегающих друг к другу N=500 витков алюминиевого провода сечением S=1 мм², помещена в магнитное поле. Ось катушки параллельна линиям индукции. Магнитная индукция поля равномерно изменяется со скоростью 1 мТл/с. Определите тепловую мощность, выделяющуюся в катушке, если концы замкнуты накоротко. Удельное сопротивление алюминия  $\rho=26$  нОм/м.
- 22) В однородном магнитном поле (B = 0.2 Тл) равномерно с частотой n = 600

- мин<sup>-1</sup> вращается рамка, содержащая N=1200 витков, плотно прилегающих друг к другу. Площадь рамки  $S=100~{\rm cm}^2$ . Ось вращения лежит в плоскости рамки и перпендикулярна линиям магнитной индукции. Определите максимальную ЭДС, индуцируемую в рамке.
- 23) Магнитная индукция В поля между полюсами двухполюсного генератора равна 1 Тл. Ротор имеет 140 витков (площадь каждого витка  $S = 500 \text{ cm}^2$ ). Определите частоту вращения якоря, если максимальное значение ЭДС индукции равно 220 В.
- 24) В однородном магнитном поле равномерно вращается прямоугольная рамка с частотой n=600 мин<sup>-1</sup>. Амплитуда индуцируемой ЭДС  $\epsilon_0=3$  В. Определите максимальный магнитный поток через рамку.
- 25) Катушка длиной I = 50 см и диаметром d = 5 см содержит N = 200 витков. По катушке течет ток I = 1 А. Определите: 1) индуктивность катушки; 2) магнитный поток, пронизывающий площадь ее поперечного сечения.
- 26) Длинный соленоид индуктивностью L=4 мГн содержит N=600 витков. Площадь поперечного сечения соленоида S=20 см $^2$ . Определите магнитную индукцию поля внутри соленоида, если сила тока, протекающего по его обмотке, равна 6 A.
- 27) Две длинные катушки намотаны на общий сердечник, причем индуктивности этих катушек  $L_1 = 0.64~\Gamma$ н и  $L_2 = 0.04~\Gamma$ н. Определите, во сколько раз число витков первой катушки больше, чем второй.
- 28) Колебательный контур состоит из катушки индуктивностью L=1 м $\Gamma$ н и конденсатора емкостью C=2 н $\Phi$ . Пренебрегая сопротивлением контура, определите, на какую длину волны этот контур настроен.
- 29) Колебательный контур состоит из катушки индуктивностью L=0.2 мГн и конденсатора площадью пластин S=155 см², расстояние между которыми d=1.5 мм. Зная, что контур резонирует на длину волны  $\lambda=630$  м, определите диэлектрическую проницаемость среды, заполняющей пространство между пластинами конденсатора.
- 30) Колебательный контур содержит соленоид (длина 1 = 5 см, площадь поперечного сечения  $S_1 = 1,5$  см², число витков N = 500) и плоский конденсатор (расстояние между пластинами d = 1,5 мм, площадь пластин  $S_2 = 100$  см²). Определите частоту  $\omega_0$  собственных колебаний контура.
- 31) Колебательный контур состоит из катушки индуктивностью L=0,1 Гн и конденсатора емкостью C=39,5 мкФ. Заряд конденсатора  $Q_m=3$  мкКл. Пренебрегая сопротивлением контура, запишите уравнение: 1) изменения силы тока в цепи в зависимости от времени; 2) изменения напряжения на конденсаторе в зависимости от времени.
- 32) Сила тока в колебательном контуре, содержащем катушку индуктивностью L=0,1 Гн и конденсатор, со временем изменяется согласно уравнению I=-0,1

- sin 200πt, А. Определите: 1) период колебаний; 2) емкость конденсатора; 3) максимальное напряжение на обкладках конденсатора; 4) максимальную энергию магнитного поля; 5) максимальную энергию электрического поля.
- 33) Конденсатор емкостью С зарядили до напряжения  $U_m$  и замкнули на катушку индуктивностью L. Пренебрегая сопротивлением контура, определите амплитудное значение силы тока в данном колебательном контуре.
- 34) Колебательный контур содержит катушку с общим числом витков N=100 индуктивностью L=10 мк $\Gamma$ н и конденсатор емкостью C=1 н $\Phi$ . Максимальное напряжение  $U_m$  на обкладках конденсатора составляет 100 В. Определите максимальный магнитный поток, пронизывающий катушку.
- 35) Два одинаково направленных гармонических колебания одинакового периода с амплитудами  $A_1 = 4$  см и  $A_2 = 8$  см имеют разность фаз  $\phi = 45^{\circ}$ . Определите амплитуду результирующего колебания.
- 36) Амплитуда результирующего колебания, получающегося при сложении двух одинаково направленных гармонических колебаний одинаковой частоты, обладающих разностью фаз  $60^{\circ}$ , равна A=6 см. Определите амплитуду  $A_2$  второго колебания, если  $A_1=5$  см.
- 37) Определите разность фаз двух одинаково направленных гармонических колебаний одинаковой частоты и амплитуды, если амплитуда их результирующего колебания равна амплитудам складываемых колебаний.
- 38) Частота свободных затухающих колебаний некоторой системы  $\omega = 65$  рад/с, а ее добротность Q = 2. Определите собственную частоту  $\omega_0$  колебаний этой системы.
- 39) Определите длину бегущей волны  $\lambda$ , если расстояние  $\Delta l$  между первым и четвертым узлами стоячей волны равно 30 см.
- 40) Электромагнитная волна с частотой v = 5 МГц переходит из немагнитной среды с диэлектрической проницаемостью  $\varepsilon = 2$  в вакуум. Определите приращение ее длины волны.

#### Описание методики оценивания ответа на билет зачёта:

**оценку** «зачтено» студент получает в случае написания всех контрольных работ и тестов минимум на оценку «удовлетворительно» (соответствует 3 баллам и выше) и удовлетворительного ответа на билет, состоящий из двух задач.

Удовлетворительным считается ответ в следующих случаях:

- верно решены 2 задач из билета
- при верном решении двух задач в общем виде допущена ошибка в числовых расчетах или при правильном ответе опущены некоторые промежуточные этапы решения или допущена непринципиальная ошибка в исходных уравнениях;
- отсутствует одно из необходимых исходных уравнений или допущена принципиальная ошибка в исходных уравнениях, но присутствуют правильные

рассуждения и действия, направленные на получение ответа(задача решена наполовину);

**оценку** «**не** зачтено» студент получает в случае невыполнения вышеперечисленных требований

## Пакет оценочных средств для 4 семестра

# Примеры контрольных работ Контрольная работа №1 Вариант 1.

- 3. Опишите интегральный и дифференциальный подход в спектроскопии
  - 4. Опишите действия для моделирования графеноподобных структур
- 5. В чём разница эмпирических и неэмпирических методов расчёта молекул?

## Вариант 2.

- 3. Расскажите об ИК-спектроскопии
- 4. Опишите действия для моделирования нанотрубки
- 5. Расскажите о методе DFT

# Контрольная работа №2

# Вариант 1.

- 3. Методы измерения ширины запрещённой зоны
- 4. Что такое модельный нанокластер?
- 5. Метод РМ3

# Вариант 2.

- 3. Опишите метод ЭФС
- 4. Смоделируйте кластер органический полупроводник на основе гетероатомов
- 5. Метод Хартри-Фока

# Описание методики оценивания контрольных работ:

- 5 баллов выставляется студенту, если дан верный ответ на все 3 вопроса;
- 4 балла выставляется студенту, если на 3 вопроса в целом даны верные ответы, но упущены из виду второстепенные понятия; или же при правильном изложении темы сделан не совсем верный вывод;
- 3 балла выставляется студенту, если ответы на вопросы даны неполно, но не менее чем на 50%
- 1-2 балла выставляется студенту, если не даны правильные ответы на вопросы.

## Примеры лабораторных работ:

Лабораторная работа №1.

Моделирование и расчёт биофизических наносистем: графен, фуллерен, нанотрубка.

## Лабораторная работа №3.

Определение взаимосвязи потенциалов ионизации биофизических азот- и кислородсодержащих систем от интегральных характеристик спектров поглощения данных систем

## Методика оценки лабораторных работ

- 5 баллов выставляется студенту, если лабораторная работа выполнена полностью, получены верные результаты и даны исчерпывающие выводы, написан полный отчёт;
- 4 балла выставляется студенту, если лабораторная работа выполнена полностью, получены удовлетворительные результаты и даны в целом верные, хотя и не полные, выводы, написан удовлетворительный отчёт;
- 3 балла выставляется студенту, если лабораторная работа не выполнена частично, выводы в целом верные, но не точные, отчёт написан частично;
- 1-2 балла выставляется студенту, если лабораторная работа выполнена менее 50%, либо отсутствуют выводы/отчёт

# Вопросы для зачёта, 4 семестр

- 1. Графен, фуллерен, нанотрубки. Определение, характеристики, перспективы применения в наноэлектронике
- 2. Метод расчёта энергетических состояний молекулы: РМЗ
- 3. Метод расчёта энергетических состояний молекулы: RHF-3-21G
- 4. Интегральные характеристики спектра: интегральные силы осциллятора, интегральный параметр от автокорреляционной функции.
- 5. Однофакторный регрессионный анализ (в чём заключается, особенности проведения)
- 6. Погрешности и основные параметры оценки достоверности: абсолютная и относительная погрешности, средняя квадратичная погрешность, коэффициент вариации, коэффициент корреляции. Рассказать для чего они нужны и что характеризуют.

- 7. Ширина запрещённой зоны темновой и фото проводимости, основные методы определения.
- 8. Что такое спектры поглощения. Как и чем их регистрируют, для чего используются
- 9. Что такое спектры отражения. Как и чем их регистрируют, для чего используются
- 10. ИК-спектрометры. Для чего нужны, как используются в науке ИК-спектры
- 11. Явление парамагнитного резонанса. В чем заключается и как используется.
- 12. Расскажите об эмпирических, полуэмпирических и неэмпирических методах, применяемых при расчёте энергии молекул
- 13. Что такое ЯМР-спектроскопия, как применяются ЯМР-спектры, приборы для измерения
- 14. Что такое масс-спектрометрия, как применяются масс-спектры, приборы для измерения
- 15. Расскажите о методе ЭФС
- 16. Метод функционала плотности
- 17. Расчёт ширины запрещённой зоны методом DFT в приближении TD
- 18. Метод молекулярной механики.
- 19. Метод молекулярной динамики
- 20. Органические полупроводники. Типичные представители, структуры.

#### Описание методики оценивания ответа на билет зачёта:

**оценку** «зачтено» студент получает в случае написания всех контрольных и лабораторных работ минимум на оценку «удовлетворительно» (что соответствует 3 баллам и выше) и удовлетворительного ответа на билет, состоящий из одного вопроса. Если студентом дан верный ответ на менее чем на 50%, то такой ответ считается удовлетворительным.

**оценку** «**не** за**чтено**» студент получает в случае невыполнения вышеперечисленных требований

# Список письменных работ

- 1. Моделирование и расчёт радиотехнических наносистем: графен, фуллерен, нанотрубка
- 2. Моделирование кислород и азотсодержащих биофизических систем, расчёт их энергетических и интегральных характеристик: ИСО и АКФ.
- 3. Определение взаимосвязи потенциалов ионизации биофизических азот- и кислородсодержащих систем от интегральных характеристик спектров поглощения данных систем

4. Определение взаимосвязи ширины запрещённой зоны органических биофизических полупроводников от интегральных характеристик спектров поглощения данных систем

# 4.3.Рейтинг-план дисциплины (Приложение № 2)

## 5. Учебно-методическое и информационное обеспечение дисциплины

# 5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

#### Основная литература

- 1. 1. Веремеенко В.Ф. и др. Основы радиоэлектроники. Учебное пособие, НГУ, Новосибирск, 2010. [В библ. БашГУ имеется 15 экз.]
- 2. Гоноровский И.С. Радиотехнические цепи и сигналы. М.:Сов. Радио. 1977г. [В библ. БашГУ имеется 16 экз.]
- 3. Анго А. Математика для электро-радиоинженеров : пер. с фр. / А. Анго; под ред. К.С. Шифрина. – М. : Наука, 1964. [В библ. БашГУ имеется 25 экз.]
- 4. М.Ю. Доломатов Основы наноэлектроники. Учебное пособие. Уфа: РИНЦ Баш. ГУ-2015, 206с. [В библ. БашГУ имеется 35 экз.]
- 5. М.Ю. Доломатов, Р.З. Бахтизин, Д.О. Шуляковская Исследования электронных характеристик и свойств молекул и наночастиц. Учебное пособие. Уфа: РИНЦ Баш. ГУ-2014, 214 с[В библ. БашГУ имеется 30 экз.]
- 6. Доломатов М.Ю., Бахтизин Р.З. Исследование молекулярной и электронной структуры молекул и наночастиц. Лабораторный практикум по физическим основам наноэлектроники / 13 Учебное пособие для студентов физических специальностей Вузов Уфа: РИО БашГУ, 2012.- 120 с. [В библ. БашГУ имеется 45 экз.]

# Дополнительная литература

- 8. Нанотехнология в ближайшем десятилетии. Прогноз направления исследований / Под ред. М. К. Роко, Р. С. Вильямса, П. Аливисатоса; Пер.с англ. под ред. Р.А.Андриевского. М,:Мир, 2002. 292 с. [В библ. БашГУ имеется 22 экз.]
- 8. Ч. Пул, Ф. Оуэнс. Нанотехнологии. Мир материалов и технологий. Техносфера, Москва, 2005[В библ. БашГУ имеется 42 экз.]
  - 9. Грудинская Г.П. Распространение радиоволн / Г.П. Грудинская. М. : Высш. шк., 1972. [В библ. БашГУ имеется 29 экз.]

# 5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины

- 1. Математическое и информационное моделирование. Вып.15. ч. 1: сборник научных трудов. Доступ к тексту электронного издания возможен через Электронно-библиотечную систему издательства "Лань" <u >URL: https://e.lanbook.com/book/109828>.
- 2. Математическое и информационное моделирование. Вып.15. ч. 2: сборник научных трудов. Доступ к тексту электронного издания возможен через Электронно-библиотечную систему издательства "Лань" <u >URL: https://e.lanbook.com/book/109827>.
- 3. Кулигин С.Н., Чусов А.А. и др. Параллельный алгоритм численного моделирования акустического поля с учётом рассеивания звука при переотражениях //Вестник инженерной школы ДФУ. -2016. -№4. Доступ к тексту электронного издания возможен через Электронно-библиотечную систему издательства "Лань"
  - <ur><URL: <a href="https://e.lanbook.com/journal/issue/307273">https://e.lanbook.com/journal/issue/307273</a>>.
- 4. Бухбиндер Г.Л. Электричество и магнетизм: задачник по общей физике. /Омск: ОГУ им. Ф.М. Достоевского. -2018. -64с. Доступ к тексту электронного издания возможен через Электронно-библиотечную систему издательства "Лань" <URL: https://e.lanbook.com/book/113881>.
- 5. Котельников В.А Собрание трудов. Том 2. Космическая радиофизика и радиоастрономия. /М.: Физматлит. -2009. -396с. Доступ к тексту электронного издания возможен через Электронно-библиотечную систему издательства "Лань" <URL: https://e.lanbook.com/book/2211>.
- 6. Поисковая система «яндекс» www.yandex.ru
- 7. База данных «Scopus» www.scopus.com
- 8. Электронная библиотека БашГУ www.bashlib.ru
- 9. Электронная библиотека www.elibrary.ru

# 6. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

| Наименование специ-   | Вид занятий        | Наименование оборудования, про-          |
|-----------------------|--------------------|------------------------------------------|
| ализированных ауди-   |                    | граммного обеспечения                    |
| торий, кабинетов, ла- |                    |                                          |
| бораторий             |                    |                                          |
| Учебная аудитория для | Лабораторные заня- | 6 персональных компьютеров Pentium 4 с   |
| проведения лаборатор- | тия                | установленным ПО: MS Windows XP/7,       |
| ных занятий           |                    | MS Office, Maple 5.0, Paint, Gamess. A   |
| Аудитория 311         |                    | также мультимедийный проектор, экран,    |
|                       |                    | доска                                    |
| Помещения для         | Самостоятельная    | Читальный зал № 2                        |
| самостоятельной ра-   | работа             | 1. Научный и учебный фонд.               |
| боты                  |                    | 2. Научная периодика.                    |
| Читальный зал № 2     |                    | 3. ПК (моноблок) - 3 шт.                 |
| (физмат корпус), зал  |                    | 4. Wi-Fi доступ для мобильных устройств. |

| доступа к электронной | 5. Неограниченный доступ к ЭБС и БД.     |  |
|-----------------------|------------------------------------------|--|
| информации библио-    | 6. Количество посадочных мест – 50.      |  |
| теки (вход через чи-  | Зал доступа к электронной информации     |  |
| тальный зал № 2 физ-  | библиотеки                               |  |
| мат                   | 1. ПК (моноблок) – 8 шт., подключенных к |  |
| корпус).              | сети                                     |  |
|                       | Интернет.                                |  |
|                       | 2. Неограниченный доступ к электронным   |  |
|                       | БД и ЭБС.                                |  |
|                       | 3. Количество посадочных мест – 8.       |  |

Перечень информационных технологий, используемых при осуществлении образовательного процесса по дисциплине, включая перечень программного обеспечения и информационных справочных систем (при необходимости):

- 1. Операционная система Linux Ubuntu, https://ubuntu.ru/get
- 2. Пакет программ Open Office, https://www.openoffice.org/ru/
- 3. Среда HyperChem, пробная 30-дневная версия http://www.hyper.com/?tabid=360

## МИНОБРНАУКИ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО - ТЕХНИЧЕСКИЙ ИНСТИТУТ

# СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

| дисциплины « Компьютерное моделирование в радиотехнических и биофизических систе |
|----------------------------------------------------------------------------------|
| мах. Решение задач по радиофизике» на3 и 4семестр                                |
| (наименование дисциплины)                                                        |
| очная                                                                            |
| форма обучения                                                                   |

| Вид работы                                                                                                                           | Объем дисциплины |
|--------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Общая трудоемкость дисциплины (ЗЕТ / часов)                                                                                          | 2/72             |
| Учебных часов на контактную работу с преподавателем:                                                                                 | 62               |
| лекций                                                                                                                               | 0                |
| практических/ семинарских                                                                                                            | 32               |
| лабораторных                                                                                                                         | 30               |
| других (групповая, индивидуальная консультация и иные виды учебной деятельности, предусматривающие работу обучающихся с преподавате- |                  |
| лем) (ФКР)                                                                                                                           | 0,4              |
| Учебных часов на самостоятельную работу обучающихся (СР)                                                                             | 9,6              |
| Учебных часов на подготовку к экзамену/зачету/дифференцированному                                                                    |                  |
| зачету (Контроль)                                                                                                                    | 0                |

| Форма контроля: |      |         |
|-----------------|------|---------|
| зачёт           | 3,4_ | семестр |

| <b>№</b><br>п.п. | №<br>п.п. Тема и содержание                                                                                                                                                                                                                                       |    | лекции, практические занятия, семинарские занятия, лабораторные работы, самостоятельная работа и трудоем- |    |     | Основная и до-<br>полнительная ли-<br>тература, реко-<br>мендуемая сту-<br>дентам (номера из<br>списка) | Задания по само-<br>стоятельной ра-<br>боте студентов<br>(СРС) | Форма теку-<br>щего кон-<br>троля успева-<br>емости |
|------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------|----|-----|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
|                  |                                                                                                                                                                                                                                                                   | ЛК | ПР/СЕМ                                                                                                    | ЛР | CP  |                                                                                                         |                                                                |                                                     |
| 1                | 2                                                                                                                                                                                                                                                                 | 3  | 4                                                                                                         | 5  | 6   | 7                                                                                                       | 8                                                              | 9                                                   |
| 1                | Методика решения задач по базовым основам радиоэлектроники Законы Ома Законы Кирхгоффа Закон Ампера                                                                                                                                                               |    | 10                                                                                                        | 0  | 1,6 | 1,2                                                                                                     | По списку зада-<br>ний                                         | Контрольная работа                                  |
| 2                | Методика решения задач о колебательных и волновых процессах Колебательный контур. Расчёт цепей с учётом комплексных составляющих Расчёт фильтров Расчёт трансформаторов Расчёт генераторов сигналов различных форм Расчёты по теме цифровая обработка изображений |    | 12                                                                                                        | 0  | 1,6 | 1,2                                                                                                     | По списку заданий                                              | Контрольная работа                                  |
| 3                | Методика расчёта параметров АЦП и ЦАП Расчёт статических и динамических параметров ЦАП и АЦП, шумы и погрешно-сти квантования.                                                                                                                                    |    | 10                                                                                                        | 0  | 1,6 | 1,2,10                                                                                                  | индивидуальные за-<br>дания                                    | Зачёт                                               |
|                  | Всего часов:                                                                                                                                                                                                                                                      |    | 32                                                                                                        | 0  | 4,8 |                                                                                                         |                                                                |                                                     |

*Примечание 1.* Часы на самостоятельную работу включают время на подготовку к экзамену (контроль).

| п.п. | Тема и содержание                                                                                                                                                                                                                                                                                                                                                                  | лекции, практические занятия, семинарские занятия, лабораторные работы, самостоятельная работа и трудоемкость (в часах) |    | лекции, практические занятия, семинарские занятия, лабораторные работы, самостоятельная работа и трудоем- |     | Основная и до-<br>полнительная ли-<br>тература, реко-<br>мендуемая сту-<br>дентам (номера из<br>списка) | Задания по само-<br>стоятельной ра-<br>боте студентов<br>(СРС) | Форма теку-<br>щего кон-<br>троля успева-<br>емости |
|------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------|----|-----------------------------------------------------------------------------------------------------------|-----|---------------------------------------------------------------------------------------------------------|----------------------------------------------------------------|-----------------------------------------------------|
| 1    | 2                                                                                                                                                                                                                                                                                                                                                                                  | 3                                                                                                                       | 4  | 5                                                                                                         | 6   | 7                                                                                                       | 8                                                              | 9                                                   |
| 1    | <b>Введение.</b> Основы моделирования биофизических и радиотехнических систем. Практика применения специализированных программ.                                                                                                                                                                                                                                                    |                                                                                                                         | 7  |                                                                                                           | 1   | 4,5                                                                                                     | По списку зада-<br>ний                                         | Проверка<br>конспектов                              |
| 2    | Моделирование и расчёт графена, нанотрубок и фуллеренов: полная энергия системы, характеристик энергетических состояний.                                                                                                                                                                                                                                                           |                                                                                                                         | 8  |                                                                                                           | 2   | 5,6                                                                                                     | По списку зада-<br>ний                                         | Лабораторная<br>работа                              |
| 3    | Моделирование кислород и азотсодержащих биофизических систем, в т.ч. молекулярных полупроводников на их основе. Расчёт их энергетических характеристик полуэмпирическими и неэмпирическими методами квантовой физики (PM3, RHF-3-21G**). Нахождение интегральных сил осцилляторов (ИСО) и автокорреляционных функций (АКФ) спектров поглощения по данным электронной спектроскопии |                                                                                                                         | 7  |                                                                                                           | 1   | 5,6                                                                                                     | индивидуальные за-<br>дания                                    | Лабораторная<br>работа                              |
| 4    | Определение взаимосвязи потенциалов ионизации, ширины запрещённой зоны биофизических органических полупроводников от интегральных характеристик спектров поглощения данных систем – т.е. по ИСО и АКФ.                                                                                                                                                                             |                                                                                                                         | 8  |                                                                                                           | 1,8 | 4-6                                                                                                     | индивидуальные за-<br>дания                                    | Лаборатор-<br>ная работа                            |
|      | Всего часов:                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                         | 30 |                                                                                                           | 5,8 |                                                                                                         |                                                                |                                                     |

*Примечание 1.* Часы на самостоятельную работу включают время на подготовку к экзамену (контроль).

#### Рейтинг – план дисциплины

# «Компьютерное моделирование в радиотехнических и биофизических системах. Решение задач по радиофизике»

(название дисциплины согласно рабочему учебному плану)

направления подготовки \_\_\_\_\_ 03.03.03 Радиофизика \_\_\_\_ курс \_2 , семестр \_3 \_2020/2021 г. Количество всего часов по учебному плану  $2/\overline{72}$ , ауд. \_34 ч

Преподаватели: Доломатов М.Ю., Латыпов К.Ф..

Кафедра: Физической электроники и нанофизики

| афедра: <u>Физической</u>                     | <u>і электроник</u> | <u>:и и нанофи</u>       | <u> 1ЗИКИ</u> |              |  |
|-----------------------------------------------|---------------------|--------------------------|---------------|--------------|--|
| Виды учебной деятельности                     | Балл за кон-        | Число за-                | Баллы         |              |  |
| студентов                                     | кретное за-         | даний за                 | Минимальный   | Максимальный |  |
| Студентов                                     | дание               | семестр                  | Минимальный   | Максимальный |  |
| Модуль 1. Методика решения зад                | ач по базовым с     | ч по базовым основам ра- |               | 15           |  |
| диоэлектроники                                | циоэлектроники      |                          |               |              |  |
| Текущий контроль                              |                     |                          |               | •            |  |
| 1. Решение задач на законы Ома                | 0-1                 | 2                        | 0             | 2            |  |
| 2. Решение задач на Законы                    | 0.1                 | 2                        | 0             | 2            |  |
| Кирхгоффа                                     | 0-1                 | 3                        | 0             | 3            |  |
| 3. Решение задач на Закон Ам-                 | 0.2                 | _                        | 0             | 10           |  |
| пера.                                         | 0-2                 | 5                        | 0             | 10           |  |
| Модуль 2. Методика решения зад                | ач о колебатель     | ных и волно-             | 0             | 15           |  |
| вых процессах                                 |                     |                          | U             | 15           |  |
| Текущий контроль                              |                     |                          |               |              |  |
| 1.Колебательный контур. Расчёт                |                     | _                        |               |              |  |
| цепей с учётом комплексных со-                | 0-1                 | 2                        | 0             | 2            |  |
| ставляющих                                    |                     |                          |               |              |  |
| 2. Расчёт фильтров и трансфор-                | 0-1                 | 3                        | 0             | 3            |  |
| маторов и генераторов сигналов различных форм | 0-1                 | 3                        | O             | 3            |  |
| 3. Расчёты по теме цифровая об-               | 0.0                 | _                        |               | 10           |  |
| работка изображений                           | 0-2                 | 5                        | 0             | 10           |  |
| Рубежный контроль                             | П                   | 4                        | 1             | 1            |  |
| Контрольная работа                            | 0-5                 | 4                        | 0             | 20           |  |
| Модуль 3. Методика расчёта пара               | метров АЦП и        | ЦАП                      | 1             |              |  |
| Текущий контроль                              |                     |                          |               |              |  |
| 1. Расчёт статических и динами-               |                     |                          |               |              |  |
| ческих параметров ЦАП и АЦП,                  | 0-2                 | 5                        | 0             | 5            |  |
| шумы и погрешности квантова-                  | 0 2                 |                          |               |              |  |
| ния.                                          |                     |                          |               |              |  |
| 2. Шумы и расчет погрешности                  | 0-2                 | 5                        | 0             | 5            |  |
| квантования.<br>Рубежный контроль             |                     |                          |               |              |  |
| Защита контрольных работ                      | 0-5                 | 5                        | 0             | 25           |  |
|                                               | 0-3                 | 1 3                      | U             | 43           |  |
| Поощрительные баллы                           | 0.10                | 1                        | 0             | 10           |  |
| 1. Студенческая олимпиада                     | 0-10                | 1                        | 0             | 10           |  |
| Посещаемость (баллы вычитаю                   | тся из общей с      | уммы набран              | ных оаллов)   |              |  |

| Посещение практических (лаборат | 0 | -10 |  |  |  |  |
|---------------------------------|---|-----|--|--|--|--|
| Итоговый контроль               |   |     |  |  |  |  |
| Зачет (устный опрос)            |   | 0   |  |  |  |  |

# Приложение № 2

#### Рейтинг – план дисциплины

# «Компьютерное моделирование в радиотехнических и биофизических системах. Решение задач по радиофизике»

(название дисциплины согласно рабочему учебному плану)

направления подготовки \_\_\_\_\_ 03.03.03 Радиофизика \_\_\_\_ курс \_2 , семестр \_4 2020/2021 г. Количество всего часов по учебному плану 1 /36, ауд. 32 ч

Преподаватели: Доломатов М.Ю., Латыпов К.Ф..

Кафедра: Физической электроники и нанофизики

| Виды учебной деятельности                               | Балл за кон- Число за- |                     | Баллы       |              |  |
|---------------------------------------------------------|------------------------|---------------------|-------------|--------------|--|
| студентов                                               | кретное за-<br>дание   | даний за<br>семестр | Минимальный | Максимальный |  |
| Модуль 1. Основы моделирован                            | ия биофизичес          | ских и ра-          |             |              |  |
| диотехнических систем, а также                          | 0                      | 50                  |             |              |  |
| щих биофизических систем                                |                        |                     |             |              |  |
| Текущий контроль                                        |                        |                     |             |              |  |
| 1. Получение допуска (выполнение конспекта)             | 0-1                    | 5                   | 0           | 5            |  |
| 2. Моделирование графена, нано-                         |                        |                     |             |              |  |
| трубок и фуллеренов согласно                            |                        |                     |             |              |  |
| заданию с использованием про-                           | 0-1                    | 5                   | 0           | 5            |  |
| граммной среды HyperChem и                              |                        |                     |             |              |  |
| Excel                                                   |                        |                     |             |              |  |
| 3. Моделирование кислород и                             |                        |                     |             |              |  |
| азотсодержащих биофизических                            |                        |                     |             |              |  |
| систем согласно заданию с ис-                           | 0-1                    | 5                   | 0           | 5            |  |
| пользованием программной                                |                        |                     |             |              |  |
| среды HyperChem и Excel                                 |                        |                     |             |              |  |
| 4. Расчеты и обработка результа-                        |                        |                     |             |              |  |
| тов согласно заданию и оформле-                         | 0-2                    | 5                   | 0           | 10           |  |
| ние отчета на компьютере.                               |                        |                     |             |              |  |
| Рубежный контроль                                       |                        |                     |             |              |  |
| Защита лабораторной работы                              | 0-5                    | 5                   | 0           | 25           |  |
| Модуль 2. Определение взаимосвя                         |                        |                     |             |              |  |
| ции, ширины запрещённой зоны биофизических органических |                        |                     | 0           | 50           |  |
| полупроводников                                         |                        |                     |             |              |  |
| Текущий контроль                                        |                        |                     |             |              |  |

| 1. Получение допуска (выполне-                                  | 0-1  | 5  | 0 | 5   |
|-----------------------------------------------------------------|------|----|---|-----|
| ние конспекта)                                                  | 0-1  | 3  | O | 3   |
| 2. Расчеты согласно заданию с                                   |      |    |   |     |
| использованием программной                                      | 0-1  | 10 | 0 | 10  |
| среды HyperChem и Excel                                         |      |    |   |     |
| 3. Обработка результатов изме-                                  |      |    |   |     |
| рений и оформление отчета на                                    | 0-2  | 5  | 0 | 10  |
| компьютере                                                      |      |    |   |     |
| Рубежный контроль                                               |      |    |   |     |
| Защита лабораторной работы                                      | 0-5  | 5  | 0 | 25  |
| Поощрительные баллы                                             |      |    |   |     |
| 1. Студенческая олимпиада                                       | 0-10 | 1  | 0 | 10  |
| Посещаемость (баллы вычитаются из общей суммы набранных баллов) |      |    |   |     |
| Посещение практических (лабораторных занятий)                   |      |    | 0 | -10 |
| Итоговый контроль                                               |      |    |   |     |
| Зачет (устный опрос)                                            |      |    | 0 |     |