ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФИЗИКО - ТЕХНИЧЕСКИЙ ИНСТИТУТ

Утверждено: на заседании кафедры протокол от «27» апреля 2022 г. № 4 Зав. кафедрой Мулюков Р.Р../ Согласовано: Председатель УМК ФТИ

Балапанов М.Х./

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

дисциплина Экспериментальные методы в физике низкоразмерных систем

(наименование дисциплины)

Профессиональный цикл, вариативная

(Цикл дисциплины и его часть (базовая, вариативная, дисциплина по выбору))

программа магистратуры

Направление подготовки 03.04.02 ФИЗИКА,

Профиль подготовки <u>Физика наносистем</u>

магистр

квалификация

Разработчик (составитель)	. 10
профессор, д.фм.н.,	/_Юмагузин Ю.М.
(должность, ученая степень, ученое звание)	(подпись, Фамилия И.О.)

Для приёма: 2022 г.

Составитель / составители: д.фм.н., профессор Юмагузин Ю	0.M.
Рабочая программа дисциплины рассмотрена и одобрена на за и технологии наноматериалов протокол от «_27_»апреля_	· · · -
Заведующий кафедрой	/ Мулюков Р.Р.

Список документов и материалов

- 1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций
- 2. Цель и место дисциплины в структуре образовательной программы
- 3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)
- 4. Фонд оценочных средств по дисциплине
 - 4.1. Перечень компетенций и индикаторов достижения компетенций с указанием соотнесенных с ними запланированных результатов обучения по дисциплине. Описание критериев и шкал оценивания результатов обучения по дисциплине.
 - 4.2. Типовые контрольные задания или иные материалы, необходимые для оценивания результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине.
- 5. Учебно-методическое и информационное обеспечение дисциплины
 - 5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины
 - 5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины, включая профессиональные базы данных и информационные справочные системы
- 6. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций

По итогам освоения дисциплины обучающийся должен достичь следующих результатов обучения:

В дисциплине «Экспериментальные методы в физике низкоразмерных систем» нет универсальных компетенций (УК) и общепрофессиональных компетенций (ОПК).

2. Цель и место дисциплины в структуре образовательной программы

Дисциплина «Экспериментальные методы в физике низкоразмерных систем» относится к математическому и естественнонаучному циклу (вариативная) учебного плана по направлению 03.04.02 «Физика», профиль «Физика наносистем». Дисциплина изучается на 2 курсе во 2 семестре. В программе курса излагаются основные принципы описания низкоразмерных физических систем различной природы — электронные низкоразмерные системы, магнитные низкоразмерные системы, фазовые переходы в низкоразмерных системах. В центре внимания курса квантовый эффект Холла и низкоразмерные магнетики. Рассматриваются специфические фазовые переходы (переход Березинского-Костерлица-Таулесса) и квантово-разупорядоченные фазы низкоразмерных магнетиков.

Целью данной дисциплины является получение фундаментальных знаний в области физики низкоразмерных систем, знаний о физических свойствах различных низкоразмерных систем (электронных, магнитных), методах получения и экспериментального исследования таких систем, простейших теоретических моделях и численных методах, применяемых для описания таких систем, применении низкоразмерных систем при создании приборов и стандартов (эталонов). Освоение дисциплины должно способствовать формированию профессиональных компетенций, определяемых профилем программы. с целью их дальнейшего использования в профессиональной деятельности при описании и исследовании различных свойств материалов и наноструктурированных материалов; формирование необходимого научно-исследовательской ировня обеспечивающего как умение разбираться в современных проблемах материаловедения вырабатывать способы решения практических задач, так самостоятельно образование и профессиональное совершенствование в области физики низкоразмерных систем; формирование знаний о физических свойствах тел, обусловленных движением и взаимодействием электронов и ионов, применение их при решении профессиональных и научно-исследовательских задач. Понимание физической сущности явлений, происходящих в твердых телах, соответствующих основным разделам в физике низкоразмерных систем»: электронная курса «Экспериментальные методы металлов, заполнение электронных состояний, плотность структура распределение Ферми-Дирака, явление переноса электронов при протекании электрического тока, роль электронов в процессах теплопроводности, рассеяние электронов, явления электронной эмиссии в металлах.

Для усвоения дисциплины обучаемый должен обладать базовой математической и физической подготовкой в рамках университетского курса для студентов физиков и навыками владения современными вычислительными средствами Обучаемый должен владеть основными понятиями физики.

Дисциплина «Экспериментальные методы в физике низкоразмерных систем» призвана помочь магистрам овладеть навыками и знаниями, необходимыми для выполнения научно-исследовательской работы, включая выполнение выпускной квалификационной работы, а так же изучению таких дисциплин как: «Сверхпроводящие материалы и устройства на их основе», «Электронная теория металлов», «Электронные свойства квантоворазмерных полупроводниковых гетероструктур», «Основы сканирующей зондовой микроскопии», «Основы электронной микроскопии», «Экспериментальные методы в физике низкоразмерных систем», «Электрические и магнитные свойства наноматериалов».

3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

Содержание рабочей программы представлено в Приложении № 1.

- 4. Фонд оценочных средств по дисциплине
- 4.1. Перечень компетенций и индикаторов достижения компетенций с указанием соотнесенных с ними запланированных результатов обучения по дисциплине. Описание критериев и шкал оценивания результатов обучения по дисциплине.

Код и формулировка компетенции

ПК-3: Способен применять навыки использования принципов и методик комплексных исследований, испытаний и диагностики изделий из наноматериалов и процессов их производства, обработки и модификации, включая стандартные и сертификационные испытания

Код и	Результаты обучения по	Критерии оценивания результатов обучения					
наименование	дисциплине	2	3	4	5		
индикатора		«He	«Удовлет	•	«Отлично		
достижения		удовлетворитель	ворительн	0»	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
компетенции		но»	0>>	0//	"		
ПК-3.1 Знает	знать способов	1. не знает	1.обладае	1.	1. знает		
основы	формирования	элементарных и	Т	обладает	элементар		
разработки	низкоразмерных систем и	современных	элементар	знанием	ных и		
новых	основные	проблем	ных и	элемента	современн		
функциональны	экспериментальные	экспериментальн	современ	рных и	ых		
х материалов и	методы	ых методик	ных	совреме	проблем		
сопровождении			проблем		экспериме		
их внедрения в			экспериме	проблем	нтальных		
производство			нтальных	экспери	методик		
			методик	менталь			
				ных			
				методик			
				за			
				исключе			
				нием			
				некотор			
				ых			
ПК-3.2 Умеет	уметь использовать для	1. не умеет	1. умеет	. умеет	1. умеет		
принимать	характеризации таких	-	*	-	применять		
участие в	систем, методов описания	основы знаний	ь основы	сновы	основы		
разработке	свойств низкоразмерных	для знаний		наний для	знаний для		
	систем, в том числе	представления	для	редставл	представле		
функциональны	простейшие численные	применения	представл	гия	ния		
х материалов и	методы	основ	ения	рименени	применени		
сопровождении		экспериментальн	применен	основ м	я основ		
их внедрения в		ых методик	ия основ	кспериме	эксперимен		

производство			экспериме	тальных	тальных
			нтальных		методик
			методик		
ПК-3.3 Владеет	владеть методами	1.не владее	т владеет	1. владеет	1.владеет
навыками сос-	обработки результатов	знаниями	ознаниями с	знаниями	знаниями с
тавления науч-	экспериментальных	эксперименталь	но методах	о методах	методах
ной, техни-	исследований в задачах,	ых методик	зондовой.	зондовой	зондовой.
ческой, педаго-	связанных с физикой		микроскоп	микроско	микроскоп
гической и	низкоразмерных систем.		ии	пии	ии
иной докумен-					
тации по					
установленной					
форме с					
применением					
современных					
инфокоммуника					
ционных					
технологий					

ПК-5: Способен применять основные типы наноматериалов и наносистем неорганической (металлических и неметаллических) и органической (полимерных и углеродных) природы (твердых, жидких, гелеобразных, аэрозольных), включая нанопленки и наноструктурированные покрытия, для решения производственных задач, владением навыками выбора этих материалов для заданных условий эксплуатации с учетом требований технологичности, экономичности, надежности и долговечности, экологических последствий их применения

Результаты обучения по Код и Критерии оценивания результатов наименование дисциплине обучения индикатора 5 достижения «He «Удовлет «Хорош «Отличн удовлетво ворительн компетенции 0>> 0>> рительно» ПК-5-1Знает 1. не знает 1.обладае знать способов формирования знает основы низкоразмерных систем и обладает элемента элементар т проектирования, основные экспериментальные и элементар знанием рных ных организации и и элемента современ методы современ ных осуществления иных ных современ рных педагогической проблем ных совреме проблем экспериме проблем нных эксперим деятельности в сферах основного нтальных экспериме проблем ентальны общего, среднего методик нтальных микроск х опии заметодик общего, высшего и методик дополнительного исключе образования нием некотор ЫΧ

			T	1	,
ПК-5-2 Умеет	уметь использовать для	1. не умеет	1. умеет	. умеет	1. умеет
проектировать,	характеризации таких систем,	применять	применят	ірименять	применяті
организовывать и	методов описания свойств	основы	ь основы	сновы	основы
осуществлять	низкоразмерных систем, в том	знаний для	знаний	наний для	знаний
педагогическую	числе простейшие численные	представле	для	представле	для
деятельность в	методы	ния	представл	киз	представл
сферах основного		применени	ения	рименени	ения
общего, среднего		я основ	применен	основ м	применен
общего, высшего и		эксперимен	ия основ	кспериме	ия основ
дополнительного		тальных	экспериме	тальных	экспериме
образования		методик	нтальных	иетодик	нтальных
			методик		методик
ПК-5-3 Владеет	владеть методами обработки	1.не	владеет	1. владеет	1.владеет
навыками	результатов	владеет	наниями о	знаниями	знаниями
проектирования,	экспериментальных	знаниями	методах	о методах	0
организации и	исследований в задачах,	о методах	ксперимен	эксперим	методах
осуществления	связанных с физикой	экспериме	альных	нтальных	эксперим
педагогической	низкоразмерных систем.	нтальных	иетодик	методик	ентальны
деятельности в		методик			X
сферах основного					методик
общего, среднего					
общего, высшего и					
дополнительного					
образования					
·	· · · · · · · · · · · · · · · · · · ·		·	·	·

Критериями оценивания являются баллы, которые выставляются преподавателем за виды деятельности (оценочные средства) по итогам изучения модулей (разделов дисциплины), перечисленных в рейтинг-плане дисциплины.

4.2. Типовые контрольные задания или иные материалы, необходимые для оценивания результатов обучения по дисциплине, соотнесенных с установленными в образовательной программе индикаторами достижения компетенций. Методические материалы, определяющие процедуры оценивания результатов обучения по дисциплине.

Код и наименование индикатора достижения компетенции	Результаты обучения по дисциплине	Оценочные средства
ПК-5-13нает основы проектирования, организации и осуществления педагогической деятельности в сферах основного общего, среднего общего, высшего и	знать способов формирования низкоразмерных систем и основные экспериментальные методы	
дополнительного образования		Тест, контрольная работа
ПК-5-2 Умеет проектировать, организовывать и осуществлять педагогическую деятельность в сферах основного общего, среднего общего, высшего и дополнительного образования	уметь использовать для характеризации таких систем, методов описания свойств низкоразмерных систем, в том числе простейшие численные методы	Контрольная работа Тест
ПК-5-3 Владеет навыками проектирования, организации и осуществления педагогической деятельности в сферах основного общего, среднего общего, высшего и дополнительного образования	владеть методами обработки результатов экспериментальных исследований в задачах, связанных с физикой низкоразмерных систем.	Контрольная работа, тест

Вопросы по дисциплине

Зачет является оценочным средством для всех этапов освоения компетенций.

Примерные вопросы для зачета:

Основные микроскопические характеристики поверхности твердых тел.

Геометрическое строение, структура, топография поверхности.

Электронное строение, энергетическая структура свободных электронных состояний.

Химический элементный состав поверхности.

Взаимодействие электронов с поверхностью твердых тел.

Рассеяние электронов в твердых телах.

Длина пробега электронов, отраженные электроны, упругие и неупругие потери энергии электронами, вторично-электронная эмиссия.

Рентгеновское излучение, оже-электронная эмиссия.

Просвечивающая электронная микроскопия (ПЭМ).

Увеличение, разрешающая способность ПЭМ.

Растровая электронная микроскопия (РЭМ). Формирование изображения, контраста, детектирование сигнала в РЭМ.

Подготовка образцов для ПЭМ и РЭМ.

Дифракция медленных электронов (ДМЭ) и быстрых электронов (ДБЭ).

Определение структуры поверхности с помощью ДМЭ и ДБЭ.

Рентгеновская фотоэлектронная спектроскопия (РФЭС).

Возможности метода, количественный анализ.

Рентгеновские микроанализаторы, установки РФЭС.

Электронная оже-спектроскопия (ЭОС).

Физические основы метода ЭОС, интерпретация оже-спектров.

Качественный и количественный анализ с помощью ЭОС. Установки ЭОС.

Полевая электронная спектроскопия поверхности. Методика и установки полевой электронной спектроскопии.

Взаимодействие ионов с поверхностью твердых тел.

Отраженные ионы, упругие и неупругие потери энергии ионами.

Пробег ионов в твердых телах.

Распыление поверхности, вторично-ионная эмиссия.

Вторично-ионная масс-спектрометрия (ВИМС).

Качественный анализ химического состава поверхности.

Физические основы количественного анализа.

Исследование профилей концентрации элементов в образцах методом ВИМС.

Установки ВИМС.

Спектроскопия рассеяния медленных ионов.

Современные аналитические приборы и их применение.

В рамках использования модульно-рейтинговой системы обучения и оценки успеваемости студентов итоговая оценка знаний студента по дисциплине производится по сумме баллов, полученных в рамках текущего и рубежного контроля знаний, умений и навыков в течение семестра, и баллов, полученных на экзамене.

Критерии оценивания знаний:

Показатели сформированности компетенции:

Критериями оценивания являются баллы, которые выставляются преподавателем за виды деятельности (оценочные средства) по итогам изучения модулей (разделов дисциплины), перечисленных в рейтинг-плане дисциплины (для экзамена: текущий контроль — максимум 40 баллов; рубежный контроль — максимум 30 баллов, поощрительные баллы — максимум 10; для зачета: текущий контроль — максимум 50 баллов; рубежный контроль — максимум 50 баллов, поощрительные баллы — максимум 10).

Шкалы оценивания:

```
(для экзамена: от 45 до 59 баллов — «удовлетворительно»; от 60 до 79 баллов — «хорошо»; от 80 баллов — «отлично».
```

для зачета:

зачтено – от 60 до 110 рейтинговых баллов (включая 10 поощрительных баллов), не зачтено – от 0 до 59 рейтинговых баллов).

За ответы на вопросы билета выставляется

- <u>15-18</u> баллов, если студент дал полные, развернутые ответы на все теоретические вопросы билета, продемонстрировал знание формул, терминологии, понимание физической сути явлений и экспериментов, умение последовательно и логично отвечать на вопросы билета в объеме рекомендованной литературы.

Студент без затруднений ответил на уточняющие вопросы преподавателя по материалам билета.

- <u>10-14</u> баллов выставляется студенту, если студент раскрыл без серьезных ошибок оба теоретических вопроса, однако показал пробелы в знаниях 20-25 % объема билета. Не на все уточняющие вопросы были даны корректные ответы.
- <u>- 5-9</u> баллов выставляется студенту, если даны ответы на оба теоретических вопроса в объеме 35-50 % от полного ответа. Студентом допущено несколько существенных ошибок в толковании основных понятий, законов и формул, описании основных экспериментов. Студент не дает удовлетворительных ответов на уточняющие вопросы по билету.
- <u>1-4</u> балла выставляется студенту, если ответ на теоретические вопросы свидетельствует о непонимании и крайне неполном знании основных понятий, законов и экспериментов, или полностью отсутствует ответ на один вопрос и допущены серьезные ошибки и пробелы при ответе на второй вопрос. На уточняющие вопросы по билету не получены ответы или ответы на них в корне ошибочны.

За решение задачи на экзамене выставляется:

- 6 баллов, если задача решена полностью и без замечаний;
- 5 баллов, если задача решена полностью, но есть небольшие недочеты или несущественная ошибка в численных расчетах или преобразованиях;
- 4 балла, если все исходные положения теории и логические выводы записаны верно, но преобразования не закончены или в преобразованиях допущена ошибка;
- 3 балла, если в исходных уравнениях или в идее решения допущена серьезная ошибка, что привело к неверному результату или отсутствует одно из необходимых исходных уравнений, однако выполнены преобразования, направленные на получение ответа;
- 2 балла, если отсутствует два исходных уравнения из трех или четырех необходимых, или допущена грубая ошибка, свидетельствующая о непонимании условия задачи, однако присутствуют верные логические рассуждения, идея решения, частично правильные действия, направленные на получение ответа;
- 1 балл, если есть правильно записанное одно или два исходных положения теории или идея решения, но не сделано никаких действий для получения ответа;
 - 0 баллов решение отсутствует или полностью ошибочно.

За ответ на дополнительный вопрос на экзамене выставляется:

- -3 балла, если студент дал исчерпывающе полный и правильный ответ;
- 2 балла, если ответ верен, но дан не в полном объеме учебной программы, или содержит незначительные ошибки;
- 1 балл, если ответ на вопрос дан, но содержит серьезные ошибки или большие пробелы в изложении;
- 0 баллов, если студент не ответил или ответил в корне неверно.

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. Физика поверхности. Теоретические модели и экспериментальные методы/ М. В. Мамонова, В. В. Прудников, И. А. Прудникова. М.: Физматлит, 2011.
- 2. Аналитическая просвечивающая электронная микроскопия: пер.
- с англ./ Д. Синдо, Т. Оикава. М.: Техносфера, 2006. 256 с.
- 3. Брандон Д., Каплан У. Микроструктура материалов. Методы исследования и контроля. М.:Техносфера, 2004

Дополнительная литература:

- 4. В.Т. Черепин. Ионный микрозондовый анализ. Киев, 1992
- 5. Методы анализа поверхностей. Под ред. А.Зандерны. М.: Мир, 1979.
- 6. Электронная и ионная спектроскопия твердых тел. Л.Фирменс и др. М.: Мир, 1981.
- 7. М.А.Васильев, В.Т.Черепин. Методы анализа поверхности твердых тел. М.: Наука, 1978
- 8. Бушнев Л.С. и др. Основы электронной микроскопии. Томск. 1990.
- 9. И.Броудай, Д.Мерей. Физические основы микротехнологии. М.: Мир, 1985

5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины

- 1. Электронная библиотечная система. ЭБ БашГУ. Собственная электронная библиотека учебных и научных электронных изданий, которая включает издания преподавателей БашГУ. Авторизованный доступ по паролю из любой точки сети Интернет. Регистрация в Библиотеке БашГУ, дальнейший доступ из любой точки сети Интернет. https://elib.bashedu.ru/
- 2. Электронная библиотечная система .Университетская библиотека онлайн. Полнотекстовая БД учебных и научных электронных изданий. Авторизованный доступ по паролю из любой точки сети Интернет. Регистрация в Библиотеке БашГУ, дальнейший доступ из любой точки сети Интернет. https://biblioclub.ru/
- 3. Электронная библиотечная система издательства .Лань. Полнотекстовая БД учебных и научных электронных изданий. Авторизованный доступ по паролю из любой точки сети Интернет. Регистрация в Библиотеке БашГУ, дальнейший доступ из любой точки сети Интернет. https://e.lanbook.com/
- 4. Электронный каталог Библиотеки БашГУ Справочно-поисковый аппарат библиотеки. Включает в себя систему каталогов и картотек, справочно-библиографический фонд. http://www.bashlib.ru/catalogi/

6. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине.

Для проведения лекционный занятий используется аудиторный фонд физикотехнического института (415 аудитория).

Лабораторные занятия проводятся в специализированной лаборатории физикотехнического института (105, 106, 118 аудитории). В таблице 5 приведены сведения об основном оборудовании, которое используется при выполнения лабораторных работ.

Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине приведена в таблице:

Таблииа 5

		I dictitifet b
Наименование	Вид занятий	Наименование оборудования, программного
специализированных		обеспечения
аудиторий, кабинетов,		

лабораторий		
1	2	3
Аудитория 415	Лекции	Компьютер, мультимедийный проектор, экран, доска, программы: Windows, MS Power Point
Аудитория 106	Лабораторные работы по вторично-ионной масс-спектрометрии	7201M, Полевой электронный спектрометр УСУ-4
Аудитория 105	Лабораторные работы по определению микротвердости	Микротвердомер HVS1000B Наноскан 3D
Аудитория 118	Лабораторные работы по сканирующей зондовой микроскопии	СЗМ Наноэдьюкатор II (4 терминалов)

Лабораторные занятия по дисциплине и порядок их проведения

Основные темы дисциплины «Экспериментальные методы в физике низкоразмерных систем» приведены в таблицах 3 и 4 рабочего плана, где можно ознакомиться с расшифровкой каждой темы и основными понятиями, которые необходимо освоить по каждому модулю. В этих же таблицах подробно прописана тематика самостоятельной работы с указанием литературных источников. По каждой теме самостоятельной работы в рабочей программе указаны соответствующие параграфы основной и дополнительной литературы, которая есть в достаточном количестве в библиотеке. Рекомендуется активно пользоваться электронными ресурсами библиотеки читального зала физико-технического института.

Самостоятельную работу нужно выполнять систематически для последовательного понимания материала и готовности к промежуточным и рубежным контролям. При возникновении вопросов необходимо обращаться к лектору в отведенное время за консультацией. Возможна консультация с использованием электронной почты или социальной сети.

Обязательное условие успешного освоения лекционного материала — внимательно слушать объяснения преподавателя, вести краткий конспект, задавать вопросы лектору, если возникает непонимание материала. Очень полезно обратится к литературе, которую рекомендовал преподаватель по каждой лекции, и уяснить непонятные моменты. Если по какой-либо причине лекционное занятие было пропущено, материал необходимо проработать по рекомендуемой литературе, в противном случае следующая тема будет непонятна.

Лабораторные занятия требуют предварительной подготовки. Получив у преподавателя тему работы необходимо: проработать теоретический материал по данной работе (лекционный либо по учебной литературе); спланировать выполнение лабораторной работы: четко уяснить порядок выполнения работы, подготовить порядок сохранения и обработки полученных результатов. Перед выполнением работы необходимо сдать допуск преподавателю. После получения результатов расчетов и их предварительной обработки нужно проанализировать полученные результаты, сформулировать вывод и подготовить ответы на контрольные вопросы, которые приведены в конце работы. Ниже перечислена тематика лабораторных работ:

По итогам каждой лабораторной работы оформляется отчет, который сдается преподавателю на следующем после выполнения данной работы занятии.

Отчет должен включать:

- краткое теоретическое введение, отражающее устройство, принцип действия и назначение исследуемого прибора;
 - задание на выполнение работы;

- план проведения эксперимента;
- схему установки и ее краткое описание;
- результаты и их обсуждение, в том числе анализ погрешности эксперимента, методику обработки результатов,
 - -теоретические расчеты, анализ полученных данных и сравнение их с литературными; -выволы:
 - список использованной литературы.

По итогам каждой лабораторной работы преподаватель выставляет оценку, учитывающую предварительную подготовку, объем и качество экспериментальной части работы, глубину обсуждения результатов и качество отчета.

"Удовлетворительно" выставляется при выполнении работы по стандартной схеме и удовлетворительном знании основных закономерностей изучаемого явления.

"Хорошо" выставляется при наличии творческого, тщательно продуманного плана работы, качественного выполнения экспериментальной части, детального анализа полученных результатов и хороших знаний изучаемого вопроса.

"Отлично" требует нестандартного подхода к выполнению работы, включения в нее элементов исследования, машинной обработки результатов.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины <u>«Экспериментальные методы в физике низкоразмерных систем»</u>	_ на
4 семестр	
(наименование дисциплины)	
форма обучения	
Рабочую программу осуществляют:	
Лекции: <u>профессор, д.фм.н., Юмагузин Юлай Мухаметович,</u> (должность, уч. степень, ф.и.о.)	
Лабораторные занятия: профессор, д.фм.н., Юмагузин Юлай Мухаметович (должность, уч. степень, ф.и.о.)	

Вид работы	Объем дисциплины
Общая трудоемкость дисциплины (ЗЕТ / часов)	4/144
Учебных часов на контактную работу с преподавателем:	61,2
лекций	30
практических/ семинарских	30
лабораторных	-
других (групповая, индивидуальная консультация и иные виды	
учебной деятельности, предусматривающие работу обучающихся с	
преподавателем) (ФКР)	1,2
Учебных часов на самостоятельную работу обучающихся (СР)	55,8
Учебных часов на подготовку к	
экзамену/зачету/дифференцированному зачету (Контроль)	2

Форма контроля:		
экзамен	4	семестр

Nº п/ п	Тема и содержание	Форма изучения материал а	Колич ество часов	Интеракт ивные методы обучения	Межпр едметн ые связи	Инноваци онные методы в обучении	Основная и дополнит. литератур а	Задания по самостоятл ьной работе студентов.	Коли- честв о часов	Формы контро ля
1	2 Низкоразмерные системы: характерные длины, возможности формирования низкоразмерных систем. Особенности физики низкоразмерных систем: отсутствие дальнего порядка в одно- и двумерных кристаллах с линейным спектром возбуждений, отсутствие бозеконденсации в двумерном случае, неустойчивость одномерной системы взаимодействующих фермионов.	3 ЛК ЛР СР	2	5 Самостоя тельная работа с литерату рой	б Физика поверх ности	7	8 Осн. [2 гл.4, пп.2.1- 2.3;] Доп. [1 гл.1, пп.1.1-1.3;]	9 Основные положения физики твердого тела	10	Опрос
2	 Низкоразмерный электронный газ. Двумерный и одномерный электронный газ в полупроводниковых структурах. Двумерный электронный газ над поверхностью гелия. Состояние вигнеровского кристалла в двумерном электронном газе. Низкоразмерный электронный газ в графене и нанотрубках. Спектр электронов в графене. Пространственное распределение электронного пучка в твердых телах. 	ЛК СР	4	Метод Case- study (анализ практиче ских ситуаций) на лаб. занятии Самост. работа с литерату рой	Физика поверх ности. Эмисси онная электр оника	Компью- терные обучающ ие программ ы	Осн. [2 гл.2, пп.3.1- 3.3;] Доп. [2, 3]			

3	Одномерная модель Изинга: свободная энергия и корреляционная функция. Элементарное возбуждение одномерной модели Изинга. Двумерная модель Изинга на квадратной решётке. Свободная энергия двумерной модели Изинга. Элементарное возбуждение двумерной модели Изинга. Фазовый переход в двумерной модели Изинга. Поведение параметра порядка и теплоёмкости при фазовом переходе в двумерной модели Изинга. Двумерная модель Изинга с разными параметрами взаимодействия (без вывода). Изменение температуры упорядочения при переходе к квазиодномерному случаю.	ЛК ЛР СР	16	Метод Case- study Самост. работа с литерату рой	Электр онная оптика	гл.4 пп.: 2.3; 6]	н. [1 4, 2.1- ;, 4, 5, п. [3, 4			
4	 Дифракция медленных электронов (ДМЭ). Дифракция быстрых электронов (ДБЭ). Исследование геометрической структуры поверхности твердых тел с помощью ДМЭ и ДБЭ. 	ЛК СР	2	Самостоя тельная работа с литерату рой		5]	н. [1, 4,			
5	 Физический принцип рентгеновской фотоэлектронной спектроскопии (РФЭС). Возможности метода РФЭС, качественный и количественный химический анализ поверхности твердых тел. Рентгеновские микроанализаторы, 	ЛК СР	2		Фотоэл ектрон ная эмисси я	4]	н. [2,	Рентгеновс кая флуоренцс ентная спектроско пия	3	Доклад

	установки РФЭС.									
6	 Физический принцип электронной оже-спектроскопии (ЭОС). Возможности метода ЭОС, интерпретация оже-спектров. Качественный и количественный химический анализ с помощью ЭОС. Установки ЭОС, комбинированные микроанализаторы с применением ЭОС. 	ЛК СР	2	Метод Case- study (анализ конкретн ых практиче ских ситуаций) на семинарс ком занятии	Эмисси онная электр оника		Осн. [2, 4] Доп. [1]	Лазерная масс- спектромет рия	2	Доклад
7	 Полевая электронная и ионная эмиссия. Полевая электронная спектроскопия поверхности металлов и полупроводников. Методика и установки полевой электронной спектроскопии. 	ЛК ЛР СР	4		Эмисси онная электр оника	Компью- терные обучающ ие программ ы	Осн. [2, 4, 6] Доп. [2, 4]			

8	 Физические явления на поверхности твердых тел при ионной бомбардировки. Взаимодействие ионов с поверхностью твердых тел. Отраженные ионы, упругие и неупругие потери энергии ионами. Пробег ионов в твердых телах. Распыление поверхности, вторичноионная эмиссия. 	ЛК ЛР СР	4	Самостоя тельная работа с литерату рой		Осн. [2, 3, 4, 6] Доп. [1, 2, 4]			
9	Низкоразмерный электронный газ. Двумерный и одномерный электронный газ в полупроводниковых структурах. Двумерный электронный газ над поверхностью гелия. Состояние вигнеровского кристалла в двумерном электронном газе. Низкоразмерный электронный газ в графене и нанотрубках. Спектр электронов в графене.	ЛР ЛР СР	16	Метод Саѕе- ѕtudу (анализ практиче ских ситуаций) на лаборато рном занятии. Самостоя тельная работа с литерату рой	Компью- терные обучающ ие программ ы	Осн. [2, 3, 4, 6] Доп. [1, 2, 4]	Ионные источники	2	Доклад

Рейтинг – план дисциплины

«Экспериментальные методы исследования ФКС»

(название дисциплины согласно рабочему учебному плану)

направление <u>«Наноматериалы»,</u> направленность (профиль) «<u>Обьемные наноструктурные материалы»</u> курс 3, семестр 6

-		Число	Dus	ІЛЫ
студентов	конкретное	заданий за	Мини-	Макси-
	задание	семестр	мальный	мальный
Модуль 1 «Поверхность. Методы н	а основе электр	онного облучен	«RN	
Гекущий контроль				
Гест 1	4	5	0	20
Рубежный контроль				
1. Контрольная работа №1	5	3	0	15
ВСЕГО ПО М	<u> </u> ОДУЛЮ 1		0	35
Модуль 2 «Эмиссионные методы. 1	Методы на основ	ве ионного облу	чения.»	
»		_		
Гекущий контроль				
3. Контрольная работа №2	5	4	0	20
Рубежный контроль				
1. Тест 2	3	5	0	15
ВСЕГО ПО М	ОДУЛЮ 2	<u> </u>	0	35
Поощрительн	ые баллы			
Участие в олимпиадах по общей			0	10
физике (баллы за задачи по атомной				
физике)				
Итого поощрительных баллов			0	10
Посещаемость (баллы выч	итаются из общ	ей суммы набра	анных балл	ов)
1. Посещение лекционных			0	-6
занятий				
2. Посещение практических занятий			0	-10
Итоговый к	онтроль			