МИНОБРНАУКИ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

ФИЗИКО - ТЕХНИЧЕСКИЙ ИНСТИТУТ

КАФЕДРА ФИЗИЧЕСКОЙ ЭЛЕКТРОНИКИ И НАНОФИЗИКИ

Утверждено: на заседании кафедры физической электроники и нанофизики протокол № 6 «7»июня 2018 г. Согласовано: Председатель УМК ФТИ

Ar

/ Балапанов М.Х.

Зав. кафедрой

/ <u>Бахтизин Р.З.</u>

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

дисциплина Физические основы наноэлектроники

(наименование дисциплины)

____базовая _

(Цикл дисциплины и его часть (базовая, вариативная, дисциплина по выбору))

программа бакалавриата

Направление подготовки (специальность)

03.03.03 Радиофизика

(указывается код и наименование направления подготовки (специальности))

Направленность (профиль) подготовки

«Цифровые технологии обработки информации»

(указывается наименование направленности (профиля) подготовки)

Квалификация **бакалавр**

Разработчик (составитель)

профессор, д.хим.н.

(должность, ученая степень, ученое звание)

/Доломатов М.Ю.

(подпись, Фамилия И.О.)

Для приема: 2018 г.

Уфа- 2018 г.

Составитель / составители:

Доломатов М.Ю.

Рабочая программа дисциплины утверждена на заседании кафедры физической электроники и нанофизики «7»июня 2018 г., протокол № 6

Заведующий кафедрой _______ / <u>Бахтизин Р.З.</u>

Список документов и материалов

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы	4
2. Цель и место дисциплины в структуре образовательной программы	5
3. Содержание рабочей программы (объем дисциплины, типы и виды учебных	5
занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)	
4. Фонд оценочных средств по дисциплине	
4.1. Перечень компетенций с указанием этапов их формирования в процессе	6
освоения образовательной программы. Описание показателей и критериев	
оценивания компетенций на различных этапах их формирования, описание шкал	
оценивания	
4.2. Типовые контрольные задания или иные материалы, необходимые для оценки	7
знаний, умений, навыков и опыта деятельности, характеризующих этапы	
формирования компетенций в процессе освоения образовательной программы.	
Методические материалы, определяющие процедуры оценивания знаний, умений,	
навыков и опыта деятельности, характеризующих этапы формирования	
компетенций	
4.3. Рейтинг-план дисциплины (при необходимости)	8
5. Учебно-методическое и информационное обеспечение дисциплины	
5.1. Перечень основной и дополнительной учебной литературы, необходимой для	13
освоения дисциплины	
5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и	14
программного обеспечения, необходимых для освоения дисциплины	
6. Материально-техническая база, необходимая для осуществления образовательного	15
процесса по дисциплине	
	l

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

(с ориентацией на карты компетенций)

При изучении дисциплины <u>«Физические основы наноэлектроники»</u> у обучающегося должны формироваться следующие компетенции:

ПК-1 –способность понимать принципы работы и методы эксплуатации современной радиоэлектронной и оптической аппаратуры;

ПК-2 – способность использовать основные методы радиофизических измерений.

В результате освоения образовательной программы обучающийся должен овладеть

следующими результатами обучения по дисциплине:

Этапы	Результаты обучения	Компетенция
освоения		
1-й этап	Знать квантовые основы наноэлектроники и	ПК-1, ПК-2
	молекулярной электроники	
Знания	Знать основные направления развития и типы нано и	
	молекулярных устройств	
	Знать физико-химические принципы строения нано	
	и молекулярных структур для электроники.	
	Знать процессы переноса заряда в наночастицах.	ПК-1, ПК-2
	Знать основные понятия квантовой механики	
	молекул и твердых тел.	
	Знать теоретические основы физических методов	ПК-1, ПК-2
	расчета наночастиц. Знать основные понятия	
	квантовой механики молекул и твердых тел	
	Знать необходимых для моделирования	
	молекулярных и нано устройств на ЭВМ	
2 × -	V	пи 1 пи 2
2-й этап	Уметь практически использовать законы	ПК-1, ПК-2
X7	молекулярной механики для исследования	
Умения	Уметь исследовать структурные и электронные	
	характеристики наноэлектронных структур.	пи тика
	Уметь проводить расчеты наночастиц	ПК-1, ПК-2
	исследовать структурные и электронные	ПК-1, ПК-2
	характеристики наноэлектронных структур;	
	выполнять расчеты наночастиц с применением современных комьютерных методов Уметь	
	1 1	
	использовать стандартные программы для расчета	
3-й этап	структуры наноматериалов на компьютере Владеть основой моделирования графена,	ПК-1, ПК-2
3-и этап	фуллерена, углеродных нанотрубок	11111, 11112
Владеть	Владеть методом молекулярной механики для	ПК-1, ПК-2
навыками	расчетов наночастиц	11111, 11112
IIGDDIKGWIII	pae ieros nanotaerni	
	Владеть программами расчета структурных и	ПК-1, ПК-2
	термодинамических характеристик наноматериалов	
	1	

2. Цель и место дисциплины в структуре образовательной программы

Дисциплина «Физические основы наноэлектроники» относится к *вариативной* части рабочего учебного плана.

Дисциплина изучается на 3 курсе в 5 семестре. Данный курс предназначен для студентов направления 03.03.03 «Радиофизика»

Цели изучения дисциплины: «Физические основы наноэлектроники»

Целью учебной дисциплины является формирование у студентов знаний, навыков и умений, позволяющие самостоятельно проводить анализ работы наноэлектронных систем, принципы расчета простых электронных наноструктур.

Курс «Физические основы наноэлектроники» изучает общих вопросы теории различных наноэлектронных устройств, основ квантовой теории молекул и наночастиц, включая расчеты молекул методом молекулярной механики, рассматривает вопросы исследования структуры наночастиц: фуллеренов, графена, углеродных нанотрубок, полимерных и молекулярных полупроводников.

Для усвоения дисциплины обучаемый должен владеть современными вычислительными средствами и обладать базовой математической и физической подготовкой в рамках изучения следующих дисциплин: химия, физика твердого тела, физическая и полупроводниковая электроника, молекулярная физика, оптика, математический анализ, дифференциальные уравнения, алгоритмы и языки программирования, численные методы и математическое моделирование.

Чтобы приступить к изучению дисциплины обучаемый должен владеть основными понятиями физики и методами математического анализа, линейной алгебры, комбинаторики, информатики и основ электроники, а также владеть практическими навыками с операционными системами ЭВМ - Linux, Windows, Ms. Office, а также должны знать хотя бы один алгоритмический язык высокого уровня (Maple, Matcad, Matlab и др.)

По предмету и методу своих исследований данный курс тесно связан с такими предметами как «Информатика», «Атомная физика», «Оптика», «Общая химия», «Физические основы электроники» и способствует формированию у будущих специалистов принципов физического и инженерного подхода к оценке возможностей использования наноматериалов в конкретных элементах и устройствах электронной техники.

Предусмотренные программой знания являются базой для последующего решения специалистами научных и инженерных задач и формирования квалифицированных специалистов.

3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

Содержание рабочей программы представлено в Приложении № 1.

4. Фонд оценочных средств по дисциплине

4.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Код и формулировка компетенции:

ПК-1 –способность понимать принципы работы и методы эксплуатации современной радиоэлектронной и оптической аппаратуры

Этап	Планируемые результаты обучения	Критерии оценивания	
(уровень) освоения	(показатели достижения заданного уровня	результато	ов обучения
компетенци и	освоения компетенций)	«Не зачтено»	«зачтено»
Первый этап		0-59	60-100
	Знать квантовые основы наноэлектроники и молекулярной электроники Знать основные направления развития и типы нано и молекулярных устройств Знать физико-химические принципы строения нано и молекулярных структур для электроники. Знать процессы переноса заряда в наночастицах, основные понятия квантовой механики молекул и твердых тел.	баллов	баллов
Второй этап	Уметь практически использовать законы молекулярной механики для исследования Уметь исследовать структурные и электронные характеристики наноэлектронных структур. Уметь проводить расчеты наночастиц	0-59 баллов	60-100 баллов
Третий этап	Владеть основой моделирования графена, фуллерена, углеродных нанотрубок	0-59 баллов	60-100 баллов

ПК-2 – способность использовать основные методы радиофизических измерений

Этап (уровень)	Планируемые результаты обучения (показатели достижения заданного уровня	Критерии оценивания результатов обучения			
освоения компетен	освоения компетенций)	«Не зачтено» «зачтено»			
ции		«Не зачтено» «зачтено»			
Первый		0-59 баллов	60-100 баллов		
этап	Знать теоретические основы физических методов расчета наночастиц. Знать основные понятия квантовой механики молекул и твердых тел Знать необходимых для моделирования молекулярных и нано устройств на ЭВМ				
Второй	Уметь исследовать структурные и	0-59 баллов	60-100 баллов		

этап	электронные характеристики наноэлектронных структур; выполнять расчеты наночастиц с применением современных комьютерных методов Уметь использовать стандартные		
	программы для расчета структуры		
	наноматериалов на компьютере		
Третий	Владеть методом молекулярной механики	0-59 баллов	60-100 баллов
этап	для расчетов наночастиц		
	Владеть программами расчета		
	структурных и термодинамических		
	характеристик наноматериалов		

Критериями оценивания являются баллы, которые выставляются преподавателем за виды деятельности (оценочные средства) по итогам изучения модулей (разделов дисциплины), перечисленных в рейтинг-плане дисциплины.

Шкалы оценивания:

для зачета:

зачтено — от 60 до 110 рейтинговых баллов (включая 10 поощрительных баллов), не зачтено — от 0 до 59 рейтинговых баллов).

4.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций

Этапы освоения	Результаты обучения	Компетенция	Оценочные средства
1-й этап	Знать квантовые основы наноэлектроники и	ПК-1, ПК-2	Защита лабораторных работ, Текущие проверки
Знания	молекулярной электроники Знать основные направления развития и типы нано и молекулярных устройств Знать физико-химические принципы строения нано и молекулярных структур для электроники.		конспектов, изучения литературы, тест, опрос; зачет.
	Знать процессы переноса заряда в наночастицах. Знать основные понятия квантовой механики молекул и твердых тел.	ПК-1, ПК-2	
	Знать теоретические основы физических методов расчета наночастиц. Знать основные понятия квантовой механики молекул и твердых тел Знать необходимых для	ПК-1, ПК-2	

	моделирования молекулярных и нано устройств на ЭВМ		
2-й этап Умения	Уметь практически использовать законы молекулярной механики для исследования Уметь исследовать структурные и электронные характеристики наноэлектронных структур. Уметь проводить расчеты наночастиц	ПК-1, ПК-2	Защита лабораторных работ; контрольные работы; тесты; зачет
	исследовать структурные и электронные характеристики наноэлектронных структур; выполнять расчеты наночастиц с применением современных комьютерных методов Уметь использовать стандартные программы для расчета структуры наноматериалов на компьютере	ПК-1, ПК-2	
3-й этап Владеть навыками	Владеть основой прафена, фуллерена, углеродных нанотрубок	ПК-1, ПК-2	Лабораторные работы; контрольные работы; тесты; зачет.
	Владеть методом молекулярной механики для расчетов наночастиц	ПК-1, ПК-2	
	Владеть программами расчета структурных и термодинамических характеристик наноматериалов	ПК-1, ПК-2	

4.3 Рейтинг-план дисциплины (при необходимости)

Рейтинг-план дисциплины представлен в приложении 2.

Вопросы для зачета

Зачет является оценочным средством завершающего этапа освоения компетенции.

Примерные вопросы для зачета:

- 1. Основные термины и определения молекулярной и наноэлектроники
- 2. История развития нанотехнологии
- 3. Классификация и функции молекулярных электронных устройств
- 4. Мезофизика. Особенности физики наносостояния.
- 5. Перспективы и проблемы развития наноэлектроники
- 6. Роль поверхности наночастиц. Общая характеристика наносостояния.
- 7. Особенности поверхности наночастиц и ее влияние на физ. свойства
- 8. Уникальные оптические свойства наноструктур
- 9. Уникальные механические свойства наноструктур
- 10. перспективы молекулярной наноэлектроники и спинтроники
- 11. Определение наноструктуры с позиции физики и химии твердого тела.
- 12. Термодинамическая обусловленность образования кластеров и наночастиц.
- 13. Зависимость температуры плавления от размера наночастиц.
- 14. Значение поверхностного натяжения на границах поверхности наноматериалов.
- 15. Транспортные явления, процессы переноса импульса, тепла, зарядов и массы в низкоразмерных системах.
- 16. Влияние размерных эффектов на физико-химические свойства тел. Зависимость диэлектрической проницаемости и ширины зоны проводимости наноматериалов от размера частиц.
- 17. Осциллирующий характер физических свойств нанокластеров
- 18. . Электронная сканирующая техника.
- 19. Фазовые равновесия и термодинамика. Влияние размера частиц на фазовое равновесие. Конденсационный метод.
- 20. Механическое измельчение. Механохимический синтез.
- 21. Синтез в условиях ультразвукового воздействия и ударных волн.
- 22. Электродуговые и электрохимические методы взрыва проволок.
- 23. Химические методы синтеза органических наноматериалов. Плазмохимический синтез. Направленный супромолекулярный синтез.
- 24. Молекулярно-лучевая эпитаксия.
- 25. Самоорганизация и самосборка наноматериалов.
- 26. Нанолитография.
- 27. Электрические ,оптические и механические свойства наночастиц.
- 28. Электродуговые и электрохимические методы взрыва проволок.
- 29. Трубчатые структуры.
- 30. Графены, графаны и их аналоги.
- 31. Электронные устройства на основе легированных нанотрубок.
- 32. Нановолокна и нанотрубки улеродные нанотрубки.
- 33. Синтез нанотрубок.
- 34. Графеновая электроника.
- 35. Синтез графенов.
- 36. Фуллерены и фуллереноподобные структуры.
- 37. Технология полимерных, пористых, трубчатых и биологических наноматериалов.
- 38. ДНК электроника.

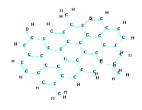
В рамках использования модульно-рейтинговой системы обучения и оценки успеваемости студентов итоговая оценка знаний студента по дисциплине производится по сумме баллов, полученных в рамках текущего и рубежного контроля знаний, умений и навыков в течение семестра, и баллов, полученных на зачете.

За работу в семестре студент получает до 100 баллов за выполнение заданий в рамках текущего и рубежного контроля и дополнительно до 10 баллов за результаты участия на студенческой научной конференции по физике.

Контрольная работа

Всего в каждом модуле по 1 контрольной работе, каждая из которых оценивается максимально в 15 и в 20 баллов. Контрольная работа состоит из 3 или же 4 заданий.

Вариант 1 контрольной работы №1


Контрольная работа №1 состоит из 3 заданий,

Построить и рассчитать молекулы в программной среде HyperChem:

1) Рассчитать молекулу донора и акцептора методом молекулярной механики в приближении ММ+ и найти оптимальную геометрию молекул: тетратиофульвалена (ТТФ) и асфальтена АСФ.

Puc.1 – Оптимизированная молекула тетратиофульвалена

Puc.2 – Оптимизированная молекула асфальтена

- 2) Рассчитать потенциал ионизации (ПИ) и сродство к электрону (СЭ) геометрию, дипольный момент молекул донора и акцептора методом RHF PM3 с оптимизацией геометрии.
- 3) Вычислить энергию квазиуровня Ферми донора и акцептора и отразить это на энергетической диаграмме.
 - 4) Рассчитать ширину запрещенной зоны с учетом экситонной поправки.

Критерии оценки (в баллах): за каждое задание выставляется максимум 5 баллов. Критерии оценки за одно задание:

- 5 баллов выставляется студенту, если задача решена абсолютно верно;
- 4 балла выставляется студенту, если при верном решении в общем виде допущена ошибка в числовых расчетах или при правильном ответе опущены некоторые промежуточные этапы решения или допущена непринципиальная ошибка в исходных уравнениях;
- 3 балла выставляется студенту, если отсутствует одно из необходимых исходных уравнений или допущена принципиальная ошибка в исходных уравнениях, но присутствуют правильные рассуждения и действия, направленные на получение ответа (задача решена наполовину);
- 1-2 балла выставляется студенту, если верно записана только часть необходимых исходных уравнений, при этом отсутствуют какие-либо математические преобразования, направленные на получение ответа или они ошибочны.
- 0 баллов ставится при отсутствии ответа или при полностью неверном ответе или когда ответ не соответствует условию задачи.

Лабораторные работы

Всего в каждом модуле по 2 лабораторных работы (всего 4 лабораторные работы), каждая из которых оценивается максимум в 10 баллов. Все лабораторные работы проводятся на ПК в программной среде HyperChem.

Пример лабораторной работы № 4

Цель работы: рассчитать энергия образования супра-молекулярных структур молекул фуллерена.

Выполнение работы:

- 1. Рассчитать ширину зоны проводимости в обычных фуллеренах C_{60} для атома B;
- 2. Рассчитать энергию образовавшихся супрамолекулярных структур в молекулах фуллерена по формуле:

$$\Delta E_1 = /E_{\phi y \pi} - E_1/, \Delta E_2 = /E_1 - E_2/, \Delta E_n = /E_{n-1} - E_n/;$$

3. Составить графики зависимости ΔE_1 , ΔE_2 и $\Delta \xi$ от числа атомов B;

Критерии оценки (в баллах):

- -10 баллов выставляется студенту в случае верного выполнения работы, наличия полного отчёта и правильных ответов на дополнительные вопросы, которые показывают высокий уровень понимания студентом темы.
- -8-9 балла выставляется студенту в случае верного выполнения работы, наличия полного отчёта и более чем 75% правильных ответов на дополнительные вопросы, показывающих хороший уровень понимания студентом темы.
- 6-7- балла выставляется студенту в случае верного выполнения работы, наличия полного отчёта, но с ошибками в расчетах, и более чем 75% правильных ответов на дополнительные вопросы, показывающих хороший уровень понимания студентом темы.
- -3-4 балла выставляется студенту в случае верного выполнения работы, наличия полного отчёта, но с ошибками в расчетах, и более чем 50% правильных ответов на дополнительные вопросы, показывающих хороший уровень понимания студентом темы.
- -1-3 балла выставляется студенту в случае неполного выполнения работы, наличию незаконченного отчёта и отсутствию ответов на дополнительные вопросы более чем на 50%.
- -0 баллов выставляются студенту, если не сделана работа, отсутствует отчёт.

Рубежный контроль

По завершении первого модуля проводится тестирование студентов. По завершении второго модуля проводится письменный (устный) опрос студентов.

Письменный и (или) устный опрос

По окончанию второго модуля и для рубежного контроля проводится опрос в письменной и (или) устной форме (всего 2 вопроса) для выявления понимания и качества усвоения дисциплины. Каждый вопрос оценивается максимум в 5 баллов. За опрос студентом можно получить мксимум 10 баллов. Вопросы для проведения опроса студентов приведены в Приложение 3.

Критерии оценки (в баллах):

- -5 баллов ставится в случае абсолютно верного ответа на вопрос
- -4 балла ставится в случае верного ответа на вопрос с незначительной ошибкой
- -3 балла ставится в случае если дан ответ на вопрос в объёме не менее 50%

- -1-2 балла выставляется, если дан ответ на вопрос в объёме менее 50%
- -0 баллов выставляется в случае, если сдана пустая работа или дан ответ на посторонний вопрос

Комплект тестов

Тестирование проводится в первом модуле для проведения рубежного контроля, состоит из 15 вопрос. Максимальное количество баллов, которое может получить студент максимум 15 баллов.

Пример тестового задания

- 1.К наночастицам относят объекты которые
- А. Имеют размер менее 1мк
- В. Имеют размер менее 100 нм
- С. Имеют размеры молекул

Критерии оценивания:

За каждый правильный ответ — 1 балл. Максимальное количество баллов- 15. Минимальное — 0 баллов.

Поощрительные баллы

Участие в конференции- 10 баллов

Творческий подход к отбору и структурированию материала	-	2 балл
Новизна и самостоятельность при постановке проблемы	-	2 балл
Выступление не является простым чтением с экрана	-	2 балл
В выступлении дополняются и раскрываются ключевые момен	ты,	
представленные на слайдах -		2 балл
Во время выступления поддерживается зрительный контакт с		
аудиторией, речь отличается богатством интонаций	-	2балл

5. Учебно-методическое и информационное обеспечение дисциплины 5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины

Основная литература:

- 1. М.Ю. Доломатов Физические основы наноэлектроники. Учебное пособие. Уфа: РИНЦ Баш. ГУ-2015, 206с. [В библ. БашГУ имеется 25 экз.]
- 2. Н. Г. Рамбиди, А. В. Берёзкин Физические и химические основы нанотехнологий. М.: Физматлит, 2009. 456 с. Библиогр.: с. 448. ISBN 978-5-9221-0988-8: 812 р. 13 к.
- 3. Доломатов М.Ю., Бахтизин Р.З. Исследование молекулярной и электронной структуры молекул и наночастиц. Лабораторный практикум по физическим основам наноэлектроники / Учебное пособие для студентов физических специальностей Вузов Уфа: РИО БашГУ, 2012.- 120 с. [В библ. БашГУ имеется 25 экз.]
- 4. М.Ю. Доломатов, Р.З. Бахтизин, Д.О. Шуляковская Исследования электронных характеристик и свойств молекул и наночастиц. Учебное пособие. Уфа: РИНЦ Баш. ГУ-2014, 214 с. [В библ. БашГУ имеется 25 экз.]

Дополнительная литература:

- 1. Нанотехнология в ближайшем десятилетии. Прогноз направления исследований / Под ред. М. К. Роко, Р. С. Вильямса, П. Аливисатоса; Пер.с англ. под ред. Р.А.Андриевского. М,: Мир, 2002. 292 с.
- 2. Ч. Пул, Ф. Оуэнс. Нанотехнологии. Мир материалов и технологий. Техносфера, Москва, 2005.
- 3. Суздалев И. Л, Суздалев П. И. Нанокластеры и нанокластерные систе¬мы. Организация, взаимодействие, свойства // Успехи химии. 2001. Т. 70.-№3.-С. 203-240.
 - 4. Чеботин В.Н. Физическая химия твердого тела. М.: Химия, 1982. 320с.
- 5. Алферов Ж. И. Двойные гетероструктуры: концепция применения в физике, электронике и технологии. Нобелевская лекция по физике //Успехи физических наук. 2002. Т. 172. № 9. С. 1068 —1086.
- 6. Киселев В. Ф., Козлов С.Н., Зотеев А. В. Основы физики поверхности твердого тела. М.: Изд-во МГУ, 1999. 284 с.
- 7. Лен Ж.-М. Супрамолекулярная химия. Концепции и перспективы /Пер. с англ. под ред. В. В. Власова, А. А. Варнека. Новосибирск: Наука, 1998.-334 с.
- 8. Морохов И. Д., Трусов Л. И., Лаповок В. Н. Физические явления в ультрадисперсных средах. М.: Энергоатомиздат, 1984. 224 с.
- 9. Глезер А. М. Аморфные и нанокристаллические структуры: сходства, различия, взаимные переходы // Российский химический журнал. —2002. Т. 46. -№ 5. С. 50-56.
- 10. Мильвидский М. Г., Челышев ВВ. Наноразмерные кластеры в полупроводниках новый подход к формированию свойств материалов // Физи¬ка и техника полупроводников. 1998. Т. 32, № 5. С. 513 530.
- 11. Озерин А. И. Наноструктуры в полимерах: получение, структура, свойства // Проблемы и достижения физико-химической и инженерной науки в области наноматериалов: Труды 7-й сессии / Под ред. В. А. Махлина. М.: ГНЦ РФ НИФХИ им. Л.Я. Карпова, 2002. Т. 1. С. 186-204.

- 12. Помогайло А.Д., Розенберг А.С., Уфлянд И.Е. Наночастицы металлов в полимерах. М.: Химия, 2000.
- 13. Помогайло А. Д. Металлополимерные нанокомпозиты с контролируемой молекулярной архитектурой // Российский химический журнал. —2002. Т. 46. -№ 5. С. 64-73.
 - 14. Симон Ж., Андре Ж. "Молекулярные полупроводники". М.: Мир, 1988.
- 15. У.А.Харрисон. "Электронная структура и свойства твердых тел". М.: Мир, 1986.
- 16. Рамбиди А.Г. "Принципы молекулярной электроники". Поверхность, 2006, №8, с.1.
 - 17. Колпаков А.В. "Дифракция рентгеновских лучей в сверхрешетках", 1992.
 - 18. Хорман М. "Полупроводниковые сверхрешетки". М.: Наука, 2009.
- 19. Елецкий А.В. "Углеродные нанотрубки". Успехи физических наук, 1997, вып.9, с.945.
- 20. Лозовик Ю.Е., Попов А.М. "Образование и рост углеродных нанострур фуллеренов, наночастиц, нанотрубок и конусов". Успехи физических наук, 1997, вып.7, с.751.

5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины A). Ресурсы Интернет.

- 1. Электронная библиотечная система. ЭБ БашГУ. Собственная электронная библиотека учебных и научных электронных изданий, которая включает издания преподавателей БашГУ. Авторизованный доступ по паролю из любой точки сети Интернет. Регистрация в Библиотеке БашГУ, дальнейшийдоступ из любой точки сети Интернет. https://elib.bashedu.ru/
- 2. Электронная библиотечная система .Университетская библиотека онлайн.— Полнотекстовая БД учебных и научных электронных изданий. Авторизованный доступ по паролю из любой точки сети Интернет. Регистрация Библиотеке БашГУ, дальнейший доступ из любой точки сети Интернет. —https://biblioclub.ru/
- 3. Электронная библиотечная система издательства .Лань. Полнотекстовая БД учебных и научных электронных изданий. Авторизованный доступ по паролю из любой точки сети Интернет. Регистрация в Библиотеке БашГУ, дальнейший доступ из любой точки сети Интернет. https://e.lanbook. com/
- 4. Электронный каталог Библиотеки БашГУ Справочно-поисковый аппарат библиотеки. Включает в себя систему каталогов и картотек, справочно-библиографический фонд. http://www.bashlib.ru/catalogi/

Б). Электронные ресурсы (дополнение списка литературы)

1. О. П. Кормилицын, Ю. А. Шукейло. Механика материалов и структур нано- и микротехники [Электронный ресурс]: учеб. пособие / Электрон. дан. и прогр. — М.: Академия, 2008. — Электрон. версия печ. публикации. — Доступ к тексту электронного издания возможен через Электронно-библиотечную систему ЭБ БашГУ.— <URL:http://https://bashedu.bibliotech.ru/Account/LogOn>.

6. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине приведена в таблице:

Наименование специализированных аудиторий, кабинетов,	Вид занятий	Наименование оборудования, программного обеспечения
лабораторий		
1	2	3
Аудитория 313	Лекции	Доска, мел, мультимедийный проектор, акустическая система, экран; учебная и научная литература по курсу; видеозаписи, связанные с программой курса, компьютерные демонстрации, технические возможности для их просмотра и прослушивания, программы: Windows, MS Power Point
Лаборатория №313	Лекции Лабораторные работы	Для проведения лабораторного практикума предназначена лаборатория, укомплектованная лабораторными стендами, измерительными приборами (осциллографы, мультиметры, и т.д.). Наличие компьютерных программ общего назначения.

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины Физические основы наноэлектроники на 5 семестр (наименование дисциплины)

очная

форма обучения

Рабочую программу осуществляют:

Лекции:

профессор кафедры физической электроники и нанофизики, д.хим.н. Доломатов М.Ю. (должность, уч. степень, ф.и.о.)

Практические занятия:

профессор физической электроники и нанофизики, д.хим.н. Доломатов М.Ю. (должность, уч. степень, ф.и.о.)

Вид работы	Объем дисциплины
Общая трудоемкость дисциплины (ЗЕТ / часов)	2/72
Учебных часов на контактную работу с преподавателем:	36,2
лекций	18
практических/ семинарских	-
лабораторных	18
других (групповая, индивидуальная консультация и иные виды	0,2
учебной деятельности, предусматривающие работу обучающихся с преподавателем) (ФКР)	
Учебных часов на самостоятельную работу обучающихся (СР)	35,8
Учебных часов на подготовку к экзамену/зачету/дифференцированному зачету (Контроль)	-
Учебных часов контроля (РГР, зачет/экзамен)	5

Форма контроля:	
зачет	_

№ п/п	Тема и содержание	Форма изучения ма практические занятия, лабораторные работы, са трудоемкос		я, семинарси самостоятел	кие занятия, пьная работа и	Основная и дополнительная литература, рекомендуемая студентам (номера из списка)	Задания по самостоятельной работе студентов	Форма текущего контроля успеваемости (коллоквиумы, контрольные работы, компьютерные тесты и т.п.)
		ЛК	ПР/СЕМ	ЛР	СР			
1	2	3	4	5	6	7	8	9
	Модуль 1: фундаменталі	ьные основі	ы наноэлектро	ники	1		1	
1.	Основные физические законы наносостояния 1. Основные термины и определения атомномолекулярной теории. Определение наночастиц 2. История развития нанотехнологии . Перспективы и проблемы развития наноэлектроники наночастицы как объекты микро и макромира	2	_	_	3,8	О[1], [2-4], Д[4],[5]	По списку заданий	Текущие проверки конспектов, изучения литературы, контрольная работа, лабораторная работа №1и №2, тест

3. Классификация			
и функции			
молекулярных			
электронных			
устройств			
4. Мезофизика.			
Особенности физики			
наносостояния.			
5.			
Термодинамические			
причины			
дисперсности.			
6. Уникальные			
поверхностные			
свойства наночастиц			
7. Осцилляция			
свойств в кластерах			
8. Виды			
наночастицы как			
объекты микро и			
макромира и			
супрамолекул.			
Гибридизация			
электронных			
состояний атомов в			
молекулах Основные			
типы наноструктур.			
9. Трубчатые			

	T	T	T
структуры.			
Электронные			
устройства на основе			
легированных			
нанотрубок. Синтез			
нанотрубок			
10. Нановолокна и			
нанотрубки улеродные			
нанотрубки			
11. Графеновая			
электроника. Синтез			
графенов . Синтез			
графана из графена.			
12. Фуллерены и			
фуллереноподобные			
структуры.			
13. Понятие о			
полимерных,			
пористых, трубчатых и			
биологических			
наноматериалов.			
14. Полиацетилены			
и другие			
полисопряженные			
полимеры ,как			
объекты электроники.			
Легирование			
полиацетилена			

2.	Получение	2	-	2	4		
	наночастиц						
	1. Механическое						
	измельчение.						
	Механохимический						
	синтез.						
	2. Синтез в						
	условиях						
	ультразвукового						
	воздействия и ударных						
	волн.						
	3. Электродуговые						
	и электрохимические						
	методы взрыва						
	проволок.						
	4. Химические						
	методы синтеза						
	органических						
	наноматериалов.						
	Плазмохимический						
	синтез.						
	Направленный						
	супромолекулярный						
	синтез.						

3	Методы расчета				
	молекул и				
	наночастиц				
	1 Электрон в				
	одно-, двумерных				
	потенциальных				
	ящиках. Электронные				
	состояния в				
	трехмерных,				
	двумерных,				
	одномерных				
	структурах.				
	Туннельные эффекты в				
	наноструктурах.				
	2 Теория				
	молекулярных				
	орбиталей (МО), и				
	теоретические методы				
	оценки электронной				
	структуры молекул				
	методы МО-ЛКАО,				
	Методы Хартри Фока,				
	и молекулярной				
	механики в расчете				
	структурных				
	характеристик и				
	физических свойств				
	наночастиц.				

						Т		
	3 Использования							
	классических МО и							
	кристаллических МО (
	функций Блоха) в							
	молекулярной							
	наноэлектрнике.							
	4 Особенности							
	электронной							
	структуры линейных и							
	квазилиненейных							
	(цепочечных) молекул.							
	5 Солитоны:							
	механизмы							
	возбуждения,							
	солитонная							
	проводимость.							
	Проводимость							
	наноматериалов							
	Органические металлы							
	и полупроводники					•		· ·
N	Лодуль 2: функциональн	ая молеку	лярная и нан		ка. Основные і ной наноэлекро		ирования и органі	изации устройств
4.	Молекулярные	2	_	2	нои наноэлекро 5	О ники О [3,4], Д [4], [8]		Текущие проверки
''	провода	~		_		- [-,.], [-], [-]		конспектов, изучения
	молекулярные							литературы,
	передающие							контрольная работа, лабораторная работа
	устройства.							лаоораторная раоота №3 и №4, опрос
	Квантовые нити и							
	квантовые точки.							
	REGITTODE TOTKII,							

Фоторностроиния				
Фотоэлектронные				
устройства				
Фотопреобразователи				
и фотодиоды.				
Уникальные				
оптические явления в				
наноструктурах.				
Одноэлектронные				
явления в				
наноэлектронных				
устройствах.				
Нанооптоэлектроник				
a				
Молекулярные				
переключающие				
устройства, триггеры				
и транзисторы				
Квантовые				
электронные				
устройства, элементы				
квантовой и				
молекулярной				
памяти.				
Особенности				
полупроводников на				
основе				
полициклических				
органических				

1			T	T
молекул.				
Органические				
сегнетоэлектрики и				
сегнетоэластики.				
Молекулярный				
полевой транзистор.				
Транзисторы и диоды				
на основе				
нанотрубок,				
фуллеренов и				
графена.				
Детекторы и				
наносенсоры				
Магнитные кластеры				
и полимеры.				
Магнитные,				
электрические и				
оптические свойства				
наноматериалов, как				
функция структуры				
Органические пара и				
ферромагнетики,. на				
основе				
полисопряженных				
полимеров.				
Органический				
феррмагнитизм				
Спиновые				

 наномагниты						
Температуры Кюри-						
Вейса и Ниэля						
целочисленный и						
дробный эффект						
Холла для						
ферромагнитных						
полимеров.						
Спинтроника —						
электроника,						
основанная на спине						
(spin-based						
electronics).						
Спиновые						
наноустройства						
Спиновый клапан.						
Спиновые датчики.						
Спиновые						
электронные						
транзисторы и						
переключатели.						
_	10		10	27.0		
Всего часов:	18	-	18	35,8		

Рейтинг-план дисциплины

Физические основы наноэлектроники

(название дисциплины согласно рабочему учебному плану)

специальность Радиофизика курс 3, семестр 5 2017/2018 гг.

Количество часов по учебному плану 72, в т.ч. аудиторная работа 36.2, самостоятельная работа 35.8.

Преподаватель: д.хим.н. Доломатов М.Ю.

Кафедра физической электроники и нанофизики

Виды учебной деятельности	Балл за	Число	Бал	ІЛЫ
студентов	конкретное	заданий за	Мини-	Макси-
	задание	семестр	мальный	мальный
Модуль 1 «Фундаментальные ос	сновы наноэлек	троники»		
Текущий контроль				
Контрольная работа №1	5	3	0	15
Лабораторная работа №1	10	1	0	10
Лабораторная работа №2	10	1	0	10
Рубежный контроль				
Тест	1	15	0	15
ВСЕГО ПО МОД	ДУЛЮ 1	·	0	50
Модуль 2 «Функциональная молеку	улярная и нано	электроника.		
Основные принципы функцион	ирования и орг	анизации		
устройств современной і	наноэлекроникі	и»		
Текущий контроль				
Контрольная работа№2	5	4	0	20
Лабораторная работа №3	10	1	0	10
Лабораторная работа №4	10	1	0	10
Рубежный контроль				
Опрос	5	2	0	10
ВСЕГО ПО МОД	ДУЛЮ 2		0	50
Поощрительны	е баллы			
Участие в конференциях			0	10
Итого поощрительных баллов			0	10
Посещаемость (баллы вычит	гаются из обще	й суммы набр	анных балл	ов)
1. Посещение лекционных			0	-6
занятий				
2. Посещение практических занятий			0	-10
Итоговый кон	троль			
Зачет			60	110