МИНОБРНАУКИ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ХИМИЧЕСКИЙ ФАКУЛЬТЕТ

Утверждено:	Согласовано:
на заседании кафедры	Председатель УМК химического факультета
дифференциальных уравнений протокол от «_23_» июня 2017 г. № 9_	
протокол от « <u>23</u> » изня <u>2017</u> г. № <u>9</u>	/ <u>Гарифуллина Г.Г.</u> _
Зав. кафедрой////	

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

дисциплина «Математика»

(наименование дисциплины)

<u>Базовая часть Б1.Б.06</u>

(Цикл дисциплины и его часть (базовая, вариативная, дисциплина по выбору))

программа специалитета

Направление подготовки (специальность) 04.05.01. «Фундаментальная и прикладная химия»

Направленность (профиль) подготовки

<u>Биоорганическая химия</u>

<u>Неорганическая химия</u>

<u>Аналитическая химия</u>

<u>Высокомолекулярные соединения</u>

Квалификация Химик. Преподаватель химии

Разработчик (составитель)

доцент, к. ф.-м. н.

доцент, к. ф.-м. н. (должность, ученая степень, ученое звание)

Гапина ГК

<u> Кучкарова А.Н.</u>

(подпись, Фамилия И.О.)

Для приема: 2017 г.

Уфа 2017 г.

Составитель: _ Галина Г.К., Кучкарова А.Н._

Заведующий кафедрой

Рабочая программа дисциплины утверждена на заседании кафедры дифференциальных уравнений протокол от «_23_» _июня_ 2017 г. № _9_
Дополнения и изменения, внесенные в рабочую программу дисциплины, утверждены на заседании кафедры дифференциальных уравнений: <u>обновлены перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины, лицензионное программное обеспечение, современные профессиональные базы данных, информационные справочные системы, протокол от «<u>25</u>» <u>июня</u> 2018 г. № <u>10</u></u>
Заведующий кафедрой — ————/ Юмагулов М.Г./
Дополнения и изменения, внесенные в рабочую программу дисциплины, утверждены на заседании кафедры
Дополнения и изменения, внесенные в рабочую программу дисциплины, утверждены на
заседании кафедры
Заведующий кафедрой/
Дополнения и изменения, внесенные в рабочую программу дисциплины, утверждены на заседании кафедры, протокол N_{2} от «» 20 _ г.

Список документов и материалов

1. Перече	нь планируемых результатов обучения по дисциплине, соотнесенных с	4				
планир	уемыми результатами освоения образовательной программы					
2. Место дисциплины в структуре образовательной программы						
	ание рабочей программы (объем дисциплины, типы и виды учебных	6				
занятий	і, учебно-методическое обеспечение самостоятельной работы обучающихся)					
	ценочных средств по дисциплине	12				
	еречень компетенций с указанием этапов их формирования в процессе	12				
освоен	ия образовательной программы. Описание показателей и критериев					
оценив	ания компетенций на различных этапах их формирования, описание шкал					
оценив	ания					
4.2. Ти	повые контрольные задания или иные материалы, необходимые для оценки	14				
знаний	, умений, навыков и опыта деятельности, характеризующих этапы					
формиј	оования компетенций в процессе освоения образовательной программы.					
Методи	ческие материалы, определяющие процедуры оценивания знаний, умений,					
навыко	в и опыта деятельности, характеризующих этапы формирования					
компет	енций					
4.3. Peì	и́тинг-план дисциплины	68				
5. Учебно	-методическое и информационное обеспечение дисциплины	72				
5.1. Пе	речень основной и дополнительной учебной литературы, необходимой для	72				
освоен	ия дисциплины					
5.2. Пе	речень ресурсов информационно-телекоммуникационной сети «Интернет» и	72				
програ	ммного обеспечения, необходимых для освоения дисциплины					
6. Матери	ально-техническая база, необходимая для осуществления образовательного	73				
процес	са по дисциплине					

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

(с ориентацией на карты компетенций)

В результате освоения образовательной программы обучающийся должен овладеть следующими результатами обучения по дисциплине:

Резуль	таты обучения	Формируемая компетенция (с указанием кода)	Примечание
Знания	1. Математический аппарат, необходимый для решения профессиональных задач в области химии и материаловедения.	31 (ОПК-3) –I: способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-3).	
	2. Основные теоретические положения смежных с химией естественнонаучных дисциплин.	32 (ОПК-3) –I: способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-3).	
Умения	1. Уметь решать типовые учебные задачи по основным разделам математики и естественнонаучных дисциплин.	У1 (ОПК-3) –I: способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-3).	
Владения (навыки / опыт деятельности)	1. Владеть навыками работы с учебной литературой, основной терминологией и понятийным аппаратом базовых математических и естественнонаучных дисциплин.	В1 (ОПК-3) –І: способностью использовать основные законы естественнонаучных дисциплин в профессиональной деятельности (ОПК-3).	

2. Место дисциплины в структуре образовательной программы

Дисциплина «Математика» относится к базовой части профессионального цикла ООП. Дисциплина изучается на 1 и 2 курсах в 1, 2, 3 и 4 семестрах.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения школьного курса следующих дисциплин: алгебра, геометрия, начала математического анализа, физика.

Перечень дисциплин, для усвоения которых необходимо изучение дисциплины «Математика»: неорганическая химия, аналитическая химия, физическая химия, квантовая химия, органическая химия, биохимия, химическая технология и др.

3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины <u>«Математика»</u> на <u>1, 2, 3 и 4</u> семестр (наименование дисциплины) <u>очная форма обучения</u>

форма обучения

Рабочую программу осуществляют:

Лекции: <u>доцент, к. ф.-м. н. Галина Г.К.</u> <u>доцент, к. ф.-м. н. Кучкарова А.Н.</u>

Практические занятия: доцент, к. ф.-м. н. Галина Г.К. доцент, к. ф.-м. н. Кучкарова А.Н.

Вид работы	Объем дисциплины
Общая трудоемкость дисциплины (ЗЕТ / часов)	20/720
Учебных часов на контактную работу с преподавателем:	
лекций	136
практических/ семинарских	154
лабораторных	
контроль самостоятельной работы (КСР)	194,4
других (групповая, индивидуальная консультация и иные виды	
учебной деятельности, предусматривающие работу обучающихся с	
преподавателем)	3,8
Учебных часов на самостоятельную работу обучающихся (СРС)	
включая подготовку к экзамену/зачету	231,8

Форма(ы) контроля: экзамен 2, 3, 4 семестр зачет 1 семестр

<u>№</u> п/п	Тема и содержание	практи	Форма изучения материалов: лекции, практические занятия, семинарские занятия, лабораторные работы, самостоятельная работа и трудоемкость (в часах)			ятия,	Основная и дополнительная литература, рекомендуемая студентам (номера	Задания по самостоятельной работе студентов	Форма текущего контроля успеваемости (коллоквиумы, контрольные работы,
		Всего	ЛК	ПР/СЕМ	ЛР	CPC	из списка)		компьютерные тесты и т.п.)
1	2	3	4	5	6	7	8	9	10
	1- й семестр								
1.	Элементы линейной алгебры. Матрицы. Операции над матрицами. Свойства, классификация матриц. Свойства определителей. Миноры. Алгебраические дополнения. Обратная матрица. Ранг матрицы. Системы линейных уравнений. Теорема Крамера. Метод Гаусса и метод обратной матрицы решения СЛАУ. Теорема Кронекера-Капелли.		12	18		6	1,5	[3], [6] [8] Глава 6, §15, зад. 15.1-15.114, §16, зад. 16.1-16.41	Контрольная работа
2.	Элементы векторной алгебры и аналитической геометрии. Векторы. Действия над векторами. Проекция вектора на ось. Скалярное и векторное произведение векторов. Прямая на плоскости. Взаимное расположение прямых на плоскости Условие параллельности и перпендикулярности прямых. Угол между двумя прямыми. Расстояние от точки до прямой. Кривые второго порядка и их канонические уравнения.		12	18		6	1,5	[3], [6] [8] Глава 1, §1, зад. 1.30- 1.51, 1.53 - 1.73, 1.76- 1.82, 1.86, 1.89, 1.93. § 2, зад. 2.1-2.49, 2.53, 2.62, 2.67-2.70, 2.73, 2.85- 2.88, 2.90-2.93, 2.106- 2.109, 2.111-2.114, 2.117- 2.119, 2.124, 2.125, 2.127- 2.154. Глава 2, §3, зад. 3.18- 3.24, 3.31-3.49. §4, зад. 4.1-4.13, 4.17- 4.20, 4.27-4.32, 4.39-4.44, 4.51, 4.52, 4.83.	Контрольная работа.

	Уравнения поверхности и линии в пространстве. Плоскость в пространстве. Прямая в пространстве.						
3.	Введение в анализ. Понятие функции одной переменной. Способы задания. Основные свойства (четность, ограниченность, периодичность, монотонность). Элементарные функции. Сложная функции. Обратная и неявная функции. Предел последовательности. Свойства сходящейся последовательности. Число е и связанные с ним пределы. Предел функции. Геометрический смысл предела функции. Свойства функции имеющей конечный предел. Бесконечно малые функции, бесконечно большие функции. Первый замечательный предел. Асимптоты графика функции. Непрерывность функции в точке. Точки разрыва функции. Свойства непрерывных функции.	12	18	5,8	1,5	[3], [6] [8] Глава 3, \$6, зад. 6.1- 6.16, 6.19, 6.20, 6.26-6.34, 6.38-6.43, 6.50-6.53, 6.55, 6.57-6.59. \$7, зад. 7.39-7.50, 7.60- 7.119, 7.132-7.147. \$8, зад. 8.31-8.51.	Контрольная работа
4.	2-й семестр Дифференциальное исчисление функции одной переменной. Задачи приводящие к понятию производной. Производная и дифференциал функции. Геометрический и физический смысл производной. Правила дифференцирования. Таблица производных основных элементарных функций. Свойства дифференцируемых функций (теоремы Ферма, Лагранжа, Ролля, Коши). Применение производной к вычислению пределов. Правило Лопиталя. Формула Тейлора. Возрастание и убывание функции. Экстремумы функции. Выпуклость и вогнутость графика функции, точки перегиба. Исследование функций и построение графиков. Наибольшее и наименьшее значение функции	16	16	40	1, 5	[3], [6] [8] Глава 4, \$9, зад. 9.1- 9.161, 9.186-9.199. \$10, зад. 10.1-10.40, 10.82-10.107, 10.116- 10.159, 10.168-10.171, 10.194-10.199.	Контрольная работа

	на отрезке.						
5.	Интегральное исчисление функции одной переменной. Первообразная функции. Определение и основные свойства неопределенного интеграла. Основные методы интегрирования: сведение к табличным интегралования переменной, интегрирование по частям. Таблица интегралов. Интегрирование рациональных, иррациональных и тригонометрических выражений. Задачи приводящие к понятию определенный интеграла. Определенный интеграл и его свойства. Формула Ньютона-Лейбница. Замена переменной и интегрирование по частям в определенном интеграле. Геометрические и физические приложения определенного интеграла. Несобственные интегралы.	16	16	40	1,5	[3], [6] [8] Глава 5, §11, зад. 11.1-11.62, 11.65-11.94, 11.96-11.212. §12, зад. 12.1-12.69, 12.91-12.93, 12.98-12.101, 12.103-12.106, 12.108, 12.109. §13, зад. 13.1-13.20, 13.31-13.42, 13.49-13.60.	Контрольная работа
	3-й семестр						
6.	Дифференциальное исчисление функции нескольких переменных. Функции нескольких переменных. Основные понятия, способы задания. Предел и непрерывность. Частные производные, полный дифференциал первого и второго порядка функции двух переменных. Экстремум функции двух переменных. Наибольшие и наименьшие значения функции двух переменных.	12	12	30	2, 5	[3], [6] [9] Глава 1, § 1-4	Контрольная работа
7.	Интегральное исчисление функции нескольких переменных. Двойной интеграл. Определение, свойства, вычисление. Поверхностные интегралы. Определение поверхностного интеграла первого рода.	12	12	30	2, 5	[3], [6] [9] Глава 2, § 5-8, глава 5, § 14-15	Контрольная работа

Вычисление поверхностных						
интегралов первого рода. Определение поверхностного						
интеграла второго рода.						
Вычисление поверхностных						
интегралов второго рода.						
Элементы теории поля.						
Скалярное поле. Линии и						
поверхности уровня. Производная						
поля по направлению. Градиент						
скалярного поля. Векторное поле.						
Векторные линии. Поток						
векторного поля через						
поверхность. Дивергенция,						
циркуляция и ротор векторного						
поля.					523.50	
8. Ряды. Числовой ряд и его сумма.	12	12	30	2, 5	[3], [6]	Контрольная работа
Свойства сходящихся рядов.					[9] Глава 3, §9, зад. 9.1-	
Необходимый признак сходимости ряда. Знакоположительные					9.101. §10, зад. 10.34-10.73,	
ряда. Знакоположительные числовые ряды и основные					10.80-10.99, 10.136-	
признаки их сходимости					10.150, 10.153-10.164,	
(сравнение, Даламбера, Коши,					10.170-10.184.	
интегральный). Знакопеременные					10.170 10.10 1.	
и знакочередующиеся ряды.						
Признак Лейбница. Абсолютная и						
условная сходимость.						
Функциональные ряды. Область						
сходимости. Степенные ряды.						
Радиус и интервал сходимости.						
Ряд Тейлора и Маклорена.						
Разложение основных						
элементарных функций в степенные ряды. Ряды Фурье.						
4-й семестр						
9. Дифференциальные уравнения.	16	16	22	2, 5	[3], [6]	Контрольная работа
Основные определения.					[9] Глава 4, §11, зад.	
Дифференциальные уравнения					11.17-11.60, 11.71-11.78,	
первого порядка: с					11.81-11.104.	
разделяющимися переменными, однородные, линейные, Бернулли,					§12, зад. 12.21-12.74.	
в полных дифференциалах.						
линейные дифференциальные Линейные дифференциальные						
уравнения второго порядка.						
Линейные дифференциальные						
уравнения второго порядка с						
постоянными коэффициентами.						
10. Теория вероятности и	16	16	22	2, 4, 5	[3] ч.2, глава 5, зад. 811-	Контрольная работа
математическая статистика.	10	10	22		815, 819-821, 830-838,	- •

Элементы комбинаторики.				843-846, 853, 854, 859,	
Классификация событий.				866-871, 874, 875.	
Пространство элементарных				[7] Главы 1-6, 9, 10, 12,	
событий. Классическое и				13.	
геометрическое определение					
вероятности. Теоремы о					
вероятности суммы и					
произведения двух случайных					
событий. Формулы полной					
вероятности, Бернулли, Байеса,					
Пуассона, Лапласа. Случайные					
величины. Законы распределения,					
функции распределения,					
математическое ожидание,					
дисперсия случайных величин.					
Генеральная совокупность и					
выборка. Вариационный ряд.					
Полигон и гистограмма.					
Эмпирическая функция					
распределения, выборочное					
среднее и дисперсия. Точечные и					
интервальные оценки параметров					
распределения. Проверка					
статистических гипотез. Линейная					
корреляция.					
Всего часов:	136	154	231,8		

4. Фонд оценочных средств по дисциплине

4.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

ОПК-3: способность использовать основные законы естественнонаучных дисциплин в профессиональной деятельности.

Этап	Планируемые	Критерии оценивания результатов обучения						
(уровень) освоения компетенци и	результаты обучения (показатели достижения заданного уровня освоения компетенций)	2 («Не удовлетворите льно»)	3 («Удовлетвор ительно»)	4 («Хорошо»)	5 («Отлично »)			
Первый этап (пороговый уровень) (ОПК-3)	Знать: математический аппарат, необходимый для решения профессиональных задач в области химии и материаловедения; основные теоретические положения смежных с химией естественнонаучных дисциплин.	Не может привести примеры использования математического аппарата при решении задач в области химии и материаловедения. Затрудняется в определении базовых понятий и формулировке основных законов смежных с химией естественнонаучных дисциплин.	Имеет представление о способах использования математического аппарата при решении задач в области химии и материаловедения, но допускает неточности в формулировках. Имеет представление о содержании отдельных разделов смежных с химией естественнонаучных дисциплин, но допускает неточности в формулировках.	Имеет представление о способах использования математического аппарата при решении задач в области химии и материаловедения. Имеет представление о содержании основных разделов смежных с химией естественнонаучны х дисциплин, знает терминологию, основные законы и понимает сущность общих закономерностей этих областей знания.	Имеет четкое, целостное представление о способах использования математического аппарата при решении задач в области химии и материаловедени я. Имеет четкое, целостное представление об общих закономерностях смежных с химией естественнонауч ных дисциплин и способах их использования при решении профессиональных задач в области химии и материаловедени			
	Уметь: решать типовые учебные задачи по основным разделам математики и естественнонаучных дисциплин.	Умеет решать типовые задачи из базовых курсов естественнонаучных дисциплин, но допускает отдельные ошибки.	Умеет решать типовые задачи из базовых курсов естественнонаучных дисциплин.	Умеет решать комбинированные задачи из базовых курсов естественнонаучны х дисциплин.	я. Умеет решать задачи повышенной сложности из базовых курсов естественнонауч ных дисциплин.			

Владеть: навыками	Владеет навыками	Владеет навыками	Владеет навыками	Владеет
работы с учебной	поиска учебной	воспроизведения	самостоятельного	навыками
литературой,	литературы, в т.ч. с	освоенного учебного	изучения	критического
основной	использованием	материала, в целом	отдельных	анализа учебной
терминологией и	электронных	владеет основной	разделов учебной	информации,
понятийным	ресурсов, частично	терминологией и	литературы,	уровень
аппаратом базовых	владеет основной	понятийным	владеет основной	владения
математических и	терминологией и	аппаратом базовых	терминологией и	терминологией и
естественнонаучных	понятийным	математических и	понятийным	понятийным
дисциплин.	аппаратом базовых	естественнонаучных	аппаратом базовых	аппаратом
	математических и	дисциплин.	математических и	позволяет
	естественнонаучных		естественнонаучны	формулировать
	дисциплин.		х дисциплин.	выводы и
				участвовать в
				дискуссии по
				учебным
				вопросам
				базовых
				математических
				И
				естественнонауч
				ных дисциплин.

Показатели сформированности компетенции:

Критериями оценивания являются баллы, которые выставляются преподавателем за виды деятельности (оценочные средства) по итогам изучения модулей (разделов дисциплины), перечисленных в рейтинг-плане дисциплины (для экзамена: текущий контроль – максимум 40 баллов; рубежный контроль – максимум 30 баллов, поощрительные баллы – максимум 10; для зачета: текущий контроль – максимум 50 баллов; рубежный контроль – максимум 50 баллов, поощрительные баллы – максимум 10).

Шкалы оценивания:

```
(для экзамена:
   от 45 до 59 баллов – «удовлетворительно»;
   от 60 до 79 баллов – «хорошо»;
  от 80 баллов – «отлично».
для зачета:
   зачтено – от 60 до 110 рейтинговых баллов (включая 10 поощрительных баллов),
   не зачтено – от 0 до 59 рейтинговых баллов).
```

4.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций

Результаты обучения	Компетенция	Оценочные
		средства
1. Математический		Индивидуальный,
аппарат, необходимый для		групповой опрос;
решения		тестирование;
1	дисциплин в	письменные ответы
	профессиональной	на вопросы; устный
	деятельности.	опрос (вопросы для
материаловедения;		самоконтроля);
		контрольные
		работы;
		задача;
		практическое
		задание.
2. Основные		Индивидуальный,
теоретические		групповой опрос;
	естественнонаучных	тестирование;
химией	дисциплин в	письменные ответы
естественнонаучных		на вопросы; устный
дисциплин.	деятельности.	опрос (вопросы для
		самоконтроля);
		контрольные
		работы;
		задача;
		практическое
	ОПИ 2	задание.
*		Контрольные
2	основные законы	работы;
1	естественнонаучных	задача;
	дисциплин в	практическое
		задание.
дисциплин.	долгольности.	
1. Владеть навыками	ОПК-3: способность	Контрольные
	использовать	работы;
1	основные законы	задача;
		практическое
=		задание.
-	деятельности.	9
дисциплин.		
	1. Математический аппарат, необходимый для решения профессиональных задач в области химии и материаловедения; 2. Основные теоретические положения смежных с химией естественнонаучных дисциплин. 1. Уметь решать типовые учебные задачи по основным разделам математики и естественнонаучных дисциплин. 1. Владеть навыками работы с учебной литературой, основной терминологией и понятийным аппаратом базовых математических и естественнонаучных	1. Математический аппарат, необходимый для решения профессиональных задач в области химии и материаловедения; 2. Основные теоретические положения смежных с химией естественнонаучных дисциплин в профессиональной деятельности. 3. Уметь решать типовые учебные задачи по основным разделам математики и естественнонаучных дисциплин. 4. Уметь решать типовые учебные задачи по основным разделам математики и естественнонаучных дисциплин в профессиональной деятельности. 5. Владеть навыками работы с учебной литературой, основной терминологией и понятийным аппаратом базовых математических и естественнонаучных дисциплин в профессиональной деятельности.

КОНТРОЛЬНО-ОЦЕНОЧНЫЕ МАТЕРИАЛЫ.

1 семестр

Контрольная работа №1

Тема: Аналитическая геометрия на плоскости.

- 1. Составьте уравнение медианы АК треугольника АВС, если А (1,3),
- B (-2,5), C (1,2).
- 2. Найдите угол между прямыми: (L1): 2x + y 5 = 0 и (L2): x 2y + 6 = 0.
- 3. Приведите уравнение кривой к каноническому виду и выполните чертеж.

$$2y^2 + 4x - 5 = 0.$$

- 4. Найдите расстояние от точки $M_0(1,1)$ до прямой (L): x + y 5 = 0.
- 5. Окружность $x^2 + y^2 = 20$ пересекает параболу $x^2 = 8$ у. Составьте уравнение их общей хорды.

Контрольная работа №2

Тема: Аналитическая геометрия в пространстве.

- 1. Вычислите скалярное и векторное произведения векторов \overline{AB} и \overline{AC} , если A (2, -3, 4), В (1, 2, -1), С (3, -2, 1).
- 2. Составьте уравнение плоскости, проходящей через точки: $M_1(1, 1, 0)$, $M_2(2, -3, 4)$, $M_3(-1, 2, -3)$.
- 3. Найдите угол между плоскостями (P_1) : x 2y + 2z 8 = 0 и (P_2) : x + z 6 = 0.
- 4. Составьте уравнение прямой, проходящей через точку А (3, -2, -1) параллельно прямой

$$\frac{x-1}{4} = \frac{y}{-1} = \frac{z+1}{3}$$
.

5. Какая поверхность определяется уравнением $z = x^2 + y^2$. Выполните чертеж.

2 семестр

Контрольная работа №3

Тема: Пределы. Исследование на непрерывность функций.

1. Вычислите пределы

a)
$$\lim_{n\to\infty} \left[\frac{2n}{n^2+4} - \frac{n+2}{n-2} \right]$$
; b) $\lim_{\delta\to\infty} \frac{x\sin 5x}{\sin^2 4x}$;

6)
$$\lim_{n\to\infty} \frac{2(n!) + (n-1)!}{3(n+1)!};$$
 Γ) $\lim_{x\to\infty} \left\| \frac{x^2+3}{x^2} \right\|^{x^2};$

2. Исследуйте функции на непрерывность и выполните схематический чертеж:

a)
$$f(x) = \frac{1}{x(x+1)}$$
; 6) $f(x) = 2^{\frac{1}{x}}$.

Контрольная работа №4

Тема: Дифференциальное и интегральное исчисление.

1. Вычислите производные следующих функций:

a)
$$y = \frac{5x}{(5+3x)^2}$$
; 6) $y = \ln \left| \frac{x^3 - 9}{x^3 - 1} \right|$.

2. Найдите дифференциалы следующих функций:

a)
$$y = \sqrt{4 + x^2}$$
; 6) $y = arctg(1 + x^2)$.

3. Исследуйте функцию и постройте ее график:

$$y = \frac{x}{x^2 + 4};$$

4. Вычислите интегралы:

a)
$$\int (\cos 3x - \sin 5x) dx$$
; 6) $\int a^{+\infty} a^{-5x} dx$; B) $\int \frac{x-1}{\sqrt{x+1}} dx$.

3 семестр

Контрольная работа №5

Тема: Ряды.

Исследуйте на сходимость следующие числовые ряды:

1.
$$\sum_{n=0}^{\infty} \frac{2n+1}{n2^n} 2 \cdot \sum_{n=0}^{\infty} \frac{\sin n}{n^3} 3 \cdot \sum_{n=0}^{\infty} (-1)^n \left[1 + \frac{1}{3^n} \right]$$

Найдите радиус и интервал сходимости следующих степенных рядов:

4.
$$\sum_{n=0}^{\infty} \frac{(x-3)^n}{n+1}$$
 5. $\sum_{n=0}^{\infty} (-1)^n \frac{x^n}{(n+1)!}$

Контрольная работа №6

Тема: Элементы теории поля.

- 1. Найдите линии уровня скалярного поля u=4x²-8y+3. Выполните чертеж.
- 2. Дано скалярное поле $u = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$, точка $M_0(1,1,1)$, вектор

Найдите:

1)
$$\overline{gradu}(M_0)$$
; 2) $\frac{du}{d\overline{a}}(M_0)$.

3. Дано векторное поле $\overline{A} = (2xy + x^2)\overline{i} + (y^2 - 3xz)\overline{j} + 5yx + z^2)\overline{k}$ и точка $M_0(1,-1,-1)$ Найдите:1) $div\overline{A}(M_0)$ 2) $\overline{rotA}(M_0)$.

4. Дано векторное поле $\overline{A} = (4x - 3y + z)\overline{j}$, поверхность (σ): 4x - y + z - 8 = 0. Найдите поток векторного поля \overline{A} через часть поверхности (σ), ограниченной координатными плоскостями в направлении внешней нормали к (σ).

4 семестр

Контрольная работа №7

Тема: Дифференциальные уравнения.

1. Найдите общее или частное решение следующих дифференциальных уравнений:

1)
$$y' = \frac{1-y}{x^2}$$
, $y(1) = 0$; 2) $y' + y \cos x = \cos x$; 3) $xdy - ydx = ydy$;

4)
$$y'' - \cos x = 2$$
; 5) $y'' - 2y' - 3y = x^2$; $y(0) = 1$; $y'(0) = 0$.

Контрольная работа №8

Тема: Теория вероятностей.

- 1. Сколькими способами можно вписать 5 крестиков и 7 ноликов в 12 пустых клеток?
- 2. В коробке находятся 8 новых и 4 израсходованные батарейки. Найти вероятность того, что две вынутые наугад батарейки окажутся новыми.
- 3. Один студент выучил 22 экзаменационных билета из 30, а другой 25 билетов из 30. Какова вероятность того, что только один из этих студентов сдаст экзамен?
- 4. В группе 25 легкоатлетов, 10 шахматистов и 20 тяжелоатлетов. Вероятность выхода в финал для легкоатлета равна 0,4, для шахматиста 0,8 и для тяжелоатлета 0,7. Какова вероятность, что спортсмен, выбранный наугад из группы, выйдет в финал?

Критерии и методика оценивания контрольных работ:

- 5 баллов выставляется студенту, если работа выполнена в полном объёме, показано уверенное владение теоретическим материалом; составлен правильный алгоритм решения задач, в логическом рассуждении, в выборе формул и решении нет ошибок, получен верный ответ; задача решена рациональным способом.
- 4 балла выставляется студенту, если работа выполнена в полном объёме, составлен правильный алгоритм решения задач, в логическом рассуждении и решении нет существенных ошибок; правильно сделан выбор формул и метода решения; есть объяснение решения, но задача решена нерациональным способом или допущено не более двух несущественных ошибок.
- 3 балла выставляется студенту, если работа выполнена не в полном объёме; допущены существенные ошибки в выборе формул и методов решения или в математических расчётах; задачи решены не полностью или в общем виде.
- 2 балла выставляется студенту, если работа выполнена не в полном объёме, задачи решены неправильно.

$$5) w = 2$$

$$6)$$

$$w = -1 + i\sqrt{3}$$

4. Если матрица

$$A = \begin{pmatrix} 2 & -1 \\ 3 & -2 \end{pmatrix}$$

то *4A* имеет вид: 1)

 $\begin{pmatrix} 8 & -4 \\ 3 & -2 \end{pmatrix}$

3)

 $\begin{pmatrix} 8 & -4 \\ 12 & -8 \end{pmatrix}_{4}$

$$\sqrt{x^2 + y^2}$$
 $|z_1| \cdot |z_2| \cdot (\sin(\varphi_1 \quad \begin{pmatrix} 2 & -4 \\ 3 & -8 \end{pmatrix}_{2})$

4)

3. Указанные

числа,

комплексные

модулю 1.

1. Задано ; Умножение комплексное комплексных число z = x + iy ; заданных в

z = x + iy являющиеся хорнями степени Выбрать верные тригонометричес 6 из утверждения, кой форме, комплексного касающиеся осуществляется числа z = 64, по формуле распределить в порядке

касающиеся осуществляется числа z=64, по формуле распределить в 1) порядке $\begin{pmatrix} 2 & -1 \\ 12 & -8 \end{pmatrix}$ Rez=y, $|z_1|\cdot|z_2|\cdot(cos(\varphi_1 \ aprymenta) = 5$. Расставить

Rez=iy; $\varphi=\arg w$, $0\leq \varphi<$ матрицы 00 матрицы 01 матрицы 02 матрицы 03 ме04 матрицы 04 матрицы 05 ме04 матрицы 05 ме04 матрицы 05 ме05 ме06 матрицы ме06 ме07 ме07 ме08 ме09 матрицы ме09 матри

 $|z_1| \cdot |z_2| \cdot (\cos(\varphi_1 - \frac{w = 1 - i\sqrt{3}}{2})$ убывания их рангов: $|z_1| \cdot |z_2| \cdot (\cos(\varphi_1 - \frac{w = 1 - i\sqrt{3}}{2})$ убывания их рангов: $|z_1| \cdot |z_2| \cdot (\cos(\varphi_1 - \frac{w = 1 - i\sqrt{3}}{2})$ $|z_2| \cdot |z_3| \cdot |z_3|$ $|z_3| \cdot |z_3| \cdot |z_3| \cdot |z_3|$

 $|z| = x^2 + y^2; (|z_1| + |z_2|) \cdot (\cos w = -1 - i\sqrt{3} + w) = -2$

В

$$\begin{pmatrix}1&2&3&4\\-1&-2&-3-4\end{pmatrix}$$

$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$

6. Для матриц A=

$$\begin{pmatrix} 1 & 2 \\ -4 & 2 \\ 0 & 1 \end{pmatrix} \quad _{\text{M}}$$

$$B = \begin{pmatrix} 2 & -1 \\ 3 & 4 \end{pmatrix}$$

те

указать

операции, которые можно выполнить: а) BA b) BA^{T} c) $B^{T}A$ d) $B^{T}A^{T}$ e) AB f) $A^{T}B$ 7. Указать те преобразования строк (столбцов) матрицы, которые

являются
элементарными:
а)
умножение
строки (столбца)
на ненулевое
число;

b) замена элементов строки (столбца)

произвольными

поменять две строки (два столбца);

d)

е) замена строки (столбца) нулевой строкой (столбцом);

транспонировани

е матрицы;

8. Если матрица системы *п* уравнений квадратная и ее определитель не равен нулю, то система

не имеет
 решений
 имеет

2) имеет единственное

решение

более п решений 4) имеет

3) имеет не

4) имеетровно п решений5) имеет

бесконечно
много решений

9. При решении
системы по
правилу Крамера
используют
формулы:

$$x_i = \frac{\Delta}{\Delta_i};$$

2)

$$x_i = \Delta_i \cdot \Delta_i$$

$$x_i = \frac{\Delta_i}{\Delta_i}$$

4)

$$x_i = \Delta - \Delta_{i};$$

$$x_i = \Delta + \Delta_i$$

10.

 \mathbf{E} сли $\mathbf{A} \cdot \vec{x} = \vec{b}$

, TO

$$_{1)}\vec{x}=\vec{b}/\mathbf{A}_{;}$$

2)
$$\vec{x} = \vec{b} \cdot \mathbf{A}$$
;

$$3)\vec{x} = \mathbf{A} \cdot \vec{b}$$

4)
$$\vec{x} = \mathbf{A}^{-1} \cdot \vec{b}$$

5)
$$\vec{x} = \vec{b} \cdot \mathbf{A}^{-1}$$

Тест рубежного контроля к модулю 2.

1. Ук ажите верное соответствие между различными видами уравнения прямой и их формой записи.

	Фо
1	$y - y_1 =$
2	Ax + B
3	y = kx
4	$\frac{y-y}{y_2-y}$
5	Ax + B
6	$\begin{array}{c} Ax + B \\ \frac{x}{a} + \frac{y}{b} \end{array}$
2.	He

обходимое и достаточное условие параллельности грямых с угловыми

коэффициентами	a)	e) $6x - 2y + 8$.	Найти уравнение
<i>k</i> ₁ и <i>k</i> ₂ :	•	13 = 0	окружности,
a) $k_1 + k_2 =$	$ Ax_0+By_0+C $	6. Укажите	симметричной с
0	$d = \frac{ Ax_0 + By_0 + C }{\sqrt{A^2 + B^2}}$	верное	•
$\mathbf{b})k_1 = k_2$ $\mathbf{c})k_1 \cdot k_2 =$		-	окружностью
,	b)	соответствие	$x^2 + y^2 = 2x + 4y -$
$+1$ d) k_1 · k_2 = $-$		между кривыми	x + y = 2x + 1y
1	$d = \sqrt{Ax_0^2 + By_0^2}$	второго порядка	относительно
3. He	, ,	и их	прямой
обходимое и	c)	каноническими	p
достаточное		уравнениями.	$\underline{x-y-3}=0,$
условие	$d = Ax_0^2 + By_0^2 +$	$\frac{1}{a^2}$	
перпендикулярно	d)	a ² _	среди
сти прямых с	u)	2	предложенных:
угловыми	Ar +By +C	1)	
коэффициентами	$d = \frac{ Ax_0 + By_0 + C }{\sqrt{A^2 + B^2 + C^2}}$		$(x - 0)^2 + (x - 2)^2 =$
		v ²	$(x-9)^2 + (y-2)^2 =$
k_1 и k_2 : a) $k_1 = k_2$;	5.	$\frac{y^2}{b^2} = 1$:
b) $k_1 + k_2 =$	Укажите	$\frac{3}{x^2+2}$	
1;	уравнения	$\frac{3}{x^2 + \frac{1}{x^2}}$	
c) $k_{2=}$	прямых,	y 2	$(x-1)^2 + (y+6)^2 =$
	параллельных	7. Уравнение	
1	прямой у = 3х	второй 3)	;
$-\frac{1}{k_1}$	+7.	второи 37	
,	a)	степени	$(x-5)^2 + (y+2)^2 =$
d) $k_1 + k_2 =$		$Ax^2 + Cx^2$	
<i>−1;</i>	$x \mid y = 1$	$Ax^2 + Cy^2 +$	1;
4.	$\frac{x}{3} + \frac{y}{9} = 1$	9.	Составить
Расстояние <i>d</i> от	b) $y = 3x -$	вует:	каноническое
точки $M(x_0, y_0)$ до	27		уравнение
прямой $Ax + By$	c)	окружности,	эллипса,
+ C = 0		эллипсу, если	проходящего
вычисляется по	y x = 1	гиперболе, ес	через точки
формуле:	$\frac{y}{9} - \frac{x}{3} = 1$	Параболе, ес.	
	d) 3x+ 2y-		
	6 = 0		$M(\frac{5}{2}; \frac{\sqrt{6}}{4})$
			24) и

$N(-2; \frac{\sqrt{15}}{5})$ и выбрать его среди предложенных: 1) $\frac{x^2}{10} + y^2 = 1$; $x^2 + \frac{y^2}{10} = 1$;	$\vec{c} = -2\vec{a} - \vec{b};$ 4) $\vec{c} = -2\vec{a} - \vec{b};$ 4) 3. Векторным произведением двух векторов $\vec{a} = (-2;3;1)$ $\vec{a} = \vec{b}$ называетс я такой вектор	$a_{1}, \vec{c} \perp \vec{a}, \vec{c} \perp \vec{b}, \vec{c}$ $a_{2}, \vec{c} \perp \vec{b}, \vec{c}$ a_{3}, \vec{b}, \vec{c} $a_{4}, \vec{c} \perp \vec{b}, \vec{c}$ $a_{5}, \vec{c} \perp \vec{b}, \vec{c}$ $a_{7}, \vec{c} \perp \vec{c}, \vec{c} \perp \vec{b}, \vec{c}$ $a_{7}, \vec{c} \perp \vec{c}, \vec{c} \perp $
2) 3) $x^{2} + 10y^{2} = 10$	$\vec{b}=(1;0;2)$ $\vec{c}=\vec{a}\times\vec{b}$ удов летворяющий Укажите верное условиям: соответствие между операциями над	т левую тройку векторо в; $\vec{a}, \vec{b}, \vec{c}_{\rm B}$
4) $10x^2 + y^2 = 10.$ 10. Составить	векторами и их результатами.	указанн ом порядке образую т
простейшее уравнение параболы, если известно, что фокус находится в точке	$2\vec{a} - 3\vec{b}$ 2. Вектор \vec{c} = (3; 4) разложен по	правую тройку векторо в;
пересечения прямой $4x-3y-4$ = 0 с осью ОХ. Выбрать его из предложенных:	векторам \vec{a} = (3; — 1) \vec{b} = (1; —2). Выберите верное разложение:	$ \vec{c} = \vec{a} \cdot \vec{b} _{s}$ $in(\vec{a}, \vec{b});$ 5)
1) $x^{2} = 4y;$ 2) $x^{2} = 16y;$ 3) $y^{2} = 16x;$ 4) $y^{2} = 4x.$	$\vec{c} = \vec{a} + 3\vec{b};$ 1) $\vec{c} = 2\vec{a} - 3\vec{b};$ 2) $\vec{c} = 9\vec{a} - 6\vec{b};$ 3)	$ \vec{c} = \vec{a} \cdot \vec{b} \cdot_{c}$ $os(\vec{a}, \vec{b})_{;}$

4. Длина	уравнением Сz+	точка	П семестр.
векторного	D = 0, то она	принадлежит	Тест рубежного
произведения	1) параллельна	этой плоскости?	контроля к
векторов \bar{a} и \bar{b}	оси Оу;	1) (0;0;0);	модулю 1
численно равна:	2) параллельна	2) (A,B,C);	1. Что
1) площади	оси Oz;	3) (- A,-B,- C);	называет
треугольника,	3) параллельна	4) (- C,-B,- A);	СЯ
построенного на	плоскости xOz;	5) (C,B,A);	функцие
векторах \bar{a} и \bar{b} ;	4) параллельна	9. Уравнение z =	й?
2) площади	плоскости хОу;	0 в пространстве	1)
параллелограмма	5) проходит	задает	число;
	через начало	1) плоскость	2)
, построенного	координат;	xOy;	правило,
на векторах	7. Если для	2) плоскость	ПО
\bar{a} и \bar{b} ;	плоскостей A_1x+	yOz;	которому
3) объему	$B_1 y + C_1 z + D_1 = 0$	3) плоскость	каждому
параллелепипеда	и $A_2x + B_2y + C_2z$	xOz;	значени
,	$+D_2$	4)ось Ох;	Ю
4) объему	=0выполняется	5)ось Оу;	аргумент
тетраэдра;	условиеА ₁ А ₂ +В ₁	10.Если	ахв
5.Смешанным	$B_2 + C_1 C_2 = 0$, To	плоскость задана	соответс
произведением	эти плоскости	уравнением Ву+	твует
трёх векторов $ar{a}$	1)	Cz+D=0, то она	одно и
, Б и с	перпендикулярн	1).параллельна	только
называется	ы;	yOz;	одно
число,	2) параллельны;	2).параллельна	значение
обозначаемое	3) совпадают;	оси Ох;	функции
<i>abc</i> , равное:	4) пересекаются	3).параллельна	y;
$_{1)}\bar{a}\cdot(\bar{b}\times\bar{c})$ $_{2)}\bar{a}\times\bar{b}\times\bar{c}$ $_{3)}(\bar{a}\times\bar{b})\cdot\bar{c}$ $_{4)}\bar{a}\times(\bar{b}+\bar{c})$	в одной точке;	оси Оу;	3)
$a \times \bar{a} \times \bar{b} \times \bar{c}$	5)проходят через	4).параллельна	вектор;
(= · · - · · -	начало	оси Оz;	4)
$_{3)}(a \times b) \cdot c$	координат;	5).проходит	матрица;
$_{4)} \bar{a} \times (\bar{b} + \bar{c})$	8. Дана	через начало	5) нет
6. Если	плоскость Ах+	координат;	правильн
плоскость задана	By+ Cz= 0. Какая		

ОГО	ОГО	называет	щиеся от
ответа.	ответа.	СЯ	x0;
2. B	3. Какая	ограниче	3) не
каком	функция	нной,	принадл
случае	называет	если	ежащая
можно	СЯ	$f(x)\leq 0;$	множест
определи	ограниче	4. Какая	ву А;
ТЬ	нной?	точка	4) нет
обратну	1)	называет	правильн
Ю	обратная	ся	ого
функцию	•	предельн	ответа;
?	2)	ой	5)
1) когда	функция	точкой	лежащая
каждый	f(x)	множест	на
элемент	называет	ва А?	границе
имеет	ся	1)	множест
единстве	ограниче	нулевая;	ва.
нный	нной,	2) т.x0	5. Предел
прообраз	если	называет	последовательно сти
,	$m \le f(x) \le$	ся	рассматривается
2) когда	M;	предельн	при условии: 1)
функция	3)	ой	$0 < x - x_0 < \delta$
постоянн	сложная;	точкой	$_{2)} x >M$
a;	4)	множест	3)
3) когда	функция	ва А,	$n \in N, n > n_0$
функция	f(x)	если в	$_{4)} n \in N, n < n_0$
не	называет	любой	$_{5)}^{,}$ $n \in \mathbb{N}$, $n \to 0$
определе	ся	окрестно	;
на;	ограниче	сти	6. Является ли произведение
4) когда	нной,	точки х0	бесконечно
функция	если	содержат	малой функции на функцию
многозна	f(x)>0;	ся точки	ограниченную,
чна;	5)	множест	бесконечно малой функцией?
5) нет	функция	ва А,	1)нет;
правильн	f(x)	отличаю	2)да; 3)иногда;
			Jimorда,

- 4)не всегда; 5) нет правильного ответа. 7. Является ли степенная функция непрерывной пр
- функция непрерывной при любом положительном значении показателя степени?
- 1) нет;
- 2) да;
- 3) иногда;
- 4) при x >1;
- 5) нет правильного ответа.
- 8. Если f(^{**X**}₀
- $+0)=f(^{\chi}_{0}-0)=L,$

но $f(^{X_0}) \neq L$, какой разрыв имеет функция? 1) нет

- 1) нет правильного ответа;
- 2) 2-го рода;
- 3) устранимый;
- 4)

неустранимый;

- 5) функция непрерывна.
- 9. Значение предела

$$\lim_{x \to 0} \frac{\sin x}{x}$$
 pas

- но:
- 1) 0; 2) 1;
- 3) e;
- 4) [∞];
- 10. Значение предела

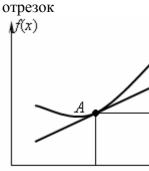
$$\lim_{x\to 0} (1+x)^{\frac{1}{x}}$$
 p

авно: 1) 0;

- 2) 1;
- 3) e;
- **4**) [∞];

Тест рубежного контроля к модулю 2.

- 1. Установит ь соответст вие между функцией и её производн ой:
- 1) Производ ная периодиче ской дифферен цируемой функции;
- 2) Производ ная четной дифферен цируемой функции;
- 3) Производ ная нечетной дифферен цируемой функции;
- 2. Если функция в точке *а* им еет конечную производн ую, то уравнение касательн ой имеет вид 1)


вид
$$y = f(a) - f$$
;
2)

$$y = f(a) + \frac{1}{f'(a)} (x_{\text{достаточное}}^{\text{H}};$$

y = f(a) + f условие для ее производной. 4) 5.

 $y = f(a) - \frac{1}{f}$ Дифференциа лу функции y = f(a) (в) y = f(a) + f (в) y = f'(a) + f (предметрического смысла соответствует

Установит е соответст вие между функциям и и их производными.

		_	
	Функция		x_0
1	$y = a^x$		
		1) AB;	
2	y = log	2) AC;	
3	y = tg x	3) BC;	
4	$y = \arcsin x$	4) BD;	
5	y = arcctg x	5) CD;	

- 4.Непрерывн ость функции есть
- 1) необходимое;
- достаточное;
- 3) необходимое

- 6. Выберите правильн ый порядок понятий
- 1) непрерывнос ть ⇒ дифференцир уемость ⇒ интегрируемо сть ⇒

ограниченнос
ТЬ
2)
дифференцир
уемость ⇒
ограниченнос
ть ⇒
интегрируемо
сть⇒
непрерывнос
ТЬ
3)
непрерывнос
ть⇒ограниче
нность⇒инте
грируемость
⇒дифференц
ируемость
4) дифферен

- цируемост ь⇒непрер ывность⇒ интегриру емость⇒о граниченн ость
- 5) ограничен ность⇒ди фференци руемость ⇒интегри руемость ⇒непрер ывность
- 6) ограничен ность⇒не прерывно сть⇒инте грируемос ть⇒дифф еренцируе мость
- 7. Если функция дифферен цируема в точке хо, то в точке X_0

функция будет:

- 1) Иметь разрыв
- 2) Иметь экстре мум;
- 3) Непре рывна;
- 4) Выпук лость график a;
- 5) Иметь произв одную
- 6) Бескон ечно малой величи ной;
- 8. Среди перечисле нных выражени й типами неопредел енности являются:
 - 1^{∞} 1) 2)
 - 0^{0} 3) ∞_0
- 4) 9. Среди
 - перечисле нных примеров c помощью непосредс твенного применен ия

правила

Лопиталя онжом решить

$$\lim_{x \to +\infty} \frac{\sqrt{x^2 - 1}}{x}$$

$$\lim_{x \to +\infty} \frac{2}{\ln x}$$

 $x + \sin x$

 $x \to +\infty$ $2x + \sin x$

вывна,
$$x \to 0$$
 x выпук $x \to 0$ x

Бескон
$$\lim_{x \to +\infty} (\ln x)^{1/x}$$
 чно $\lim_{x \to +\infty} (\sin x)^{1/x}$ бой; $\lim_{x \to \infty} \frac{x^2 + 5x}{2x^2 - 3x}$

10. Равенство f(a) = f(b)является необходи мым условием теоремы:

- 1)Коши 2)Ролля 3)Лагранжа 4)Лопиталя
- Тест рубежного контроля к модулю 3.
 - 1. Функция F(x)называетс первообра зной функции f(x) Ha некотором промежут ке, если в каждой точке

ЭТОГО промежут справедли во равенство

$$f'(x) = F(x)$$
;

$$\int_{0}^{2} F(x)dx = f(x)$$

$$\int_{0}^{4} dF(x) = F(x)$$

Установите соответствие между неопределенным и интегралами и соответствующе й совокупностью первообразных

2.

Перв	ообразная
1	$tgx+c, x\neq$
2	$\frac{a^{kx}}{k \ln a} + C, \ ($
3	$\frac{x^{n+1}}{n+1} + c$, (
4	$\int \frac{1}{a} \ln ax + b $
5	$\int_{k}^{1} a^{kx} \ln a$
6	$-\frac{1}{k}\cos kx$

Метод подстанов

ки в
интегриро
вании
основан
на
следующе
M
утвержден
ии:
$\int g(\varphi(\mathbf{x}))$
на
некотором
промежут
ке
(a;b).Укаж

ите какой

должна

функция

промежут

ке (a;b).

на

быть

 $\varphi(x)$

- 1) непрерывная;
- 2) ограниченная;
- 3) монотонная;

4)

интегрируемая;

дифференцируем ая;

> 4. Выберите замену в интеграле $\int (7-3x)^{21}$

1)t = 3x;
2) t = 7-3x;
3) t =
$$(7-3x)^{21}$$

$$t = \frac{1}{3}x;$$

5. Если u=f(x) и $v = \varphi(x)$ 1)непрерывные;

2)непрерывно дифференцируем oe; 3) монотонные;

4)элементарные;

функции, то справедливо равенство $\int u dv = uv - \int v du$

называемое формулой интегрирования по частям.

6. Из предложенных интегралов выбрать те, в которых следует обозначить $u=P_n(x)$ при интегрировании по частям:

$$\int P_n(x)\ln(x)dx$$

$$2) \int P_n(x) e^{ix} dx$$

$$_{3)}\int P_{n}(x)\sin bxdx$$

4) $\int P_n(x) \arcsin x dx$

$$\int P_n(x) \cos kx dx$$

$$\int_{G} P_n(x) a^{kx} dx$$

7. Укажите верное соответствие между типами простейших дробей и приведенными примерами, где a,p,q,A,B -

действительные $\int_{a}^{b} f(x)dx = c(f(b) - f(a))$ числа , $k \ge 2$, k ∈N, p2-4q<0.

Прим	мер	<u> 9. Формула</u>
1	$\frac{2x+1}{x^2-4x+3}$	7. Формула Ньютона- Лейбница
2	$\frac{7-2x}{(x^2+1)^2}$	$\int_{a}^{b} f(x)dx = F(b) - F(a)$
3	$\frac{24}{x^2 - 4x + 4}$	справедлива, если
4	$\frac{7-2x}{(x^2-1)^2}$	$_{1)}F'(x)=f(x)$
5	$\frac{7}{x-35}$	2) F(x) – непрерывна на
6	$\frac{3x-2}{x^2+x+1}$	3)
		<i>f</i> (<i>x</i>) – непрерывна на

4)

верное

8. Теорема о среднем значении определенного 10. Укажите интеграла: если

функция y=f(x)не прерывна на [a;b], то найдется хотя бы одна точка $c \in [a; b]$, в которой выполняется

равенство

$$\int_{a}^{b} f(x)dx = f(c)(b-a)$$

$$\int_{b}^{b} f(x)dx = f'(c)(b-a)$$

$$\int_{a}^{b} f(x)dx = \frac{f(c)}{b-a}$$

 $F(x) = \int_{a}^{x} f(t)dt$

соответствие между функцией и ее свойством. Замена переменной в определенном интеграле может быть выполнена по формуле

$$\int_{a} f(x)dx = \int_{\alpha} f(\varphi(t))\varphi'(t)dt$$

являются

Функці	RI
1	f(x)
2	$\varphi(t)$
3	$\varphi(t)$ $\varphi'(t)$

Ш

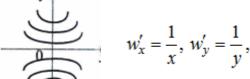
семестр

Тест рубежного контроля к модулю 1

1. Для функции
$$z = \frac{1}{x^2 + y^2}$$

укажите соответствующу ю ей область определения:

- 1) все точки координатной плоскости, кроме точки (0;0);
- 2) все точки координатной плоскости, кроме точек, лежащих на прямой у=-х;
- 3) все точки координатной плоскости
- 4) все точки координатной плоскости, кроме точек, лежащих на окружности $x^2 + y^2 = 1$;
- 2. Для функции $z = x^2 + y^2$ укажите соответствующу ю ей область значений


1)
$$(-\infty; 0) \cup (0; +\infty]$$

- 2) R;
- $_{3)}(0;+\infty)_{;}$
- $_{4)}[0;+\infty)_{;}$
- 3. Укажите, на каком рисунке изображены линии уровня функции z = xy

- $(2) y \cdot e^{xy}$
- 3) $x \cdot e^{xy}$
- $4) x \cdot e^{xy}$
- 5) e^{xy}
- 6) $xy \cdot e^{xy-1}$
- 5. Укажите верную

 $w_x' = \frac{1}{yz}, w_y' = \frac{1}{xz},$

- 4. Укажите частную производную по x первого порядка z'_{x} функции z = 1
- 1) $y \cdot e^{xy}$

4

Укажите все необходимые и достаточные условия, при которых выражение P(x,y)dx + Q(x,y) является полным дифференциалом некоторой функции u = u(x,y)

- функции P(x,y) и Q(x) $\frac{\partial P}{\partial x} = \frac{\partial Q}{\partial y}$
- $\frac{\partial P}{\partial x}; \frac{\partial Q}{\partial y}$ существуют и н $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$
- $\frac{\partial P}{\partial y}; \frac{\partial Q}{\partial x}$ существуют и н
- 7. Укажите ложное равенство

1	$\partial^3 z$	$=$ ∂^3
	$\partial x^2 \partial y$	∂y∂
2	$\partial^3 z$	$=$ ∂^3
	$\partial x^2 \partial y$	∂у∂
3	$\partial^3 z$	∂^2
	$\partial x^2 \partial y$	∂x^2
4	$\partial^3 z$	∂^3
	$\partial x^2 \partial y$	∂x∂
5	$\partial^3 z$	_ ∂(
	$\partial x^2 \partial y$	∂x
	$\partial x^2 \partial y$	cx (

 $w'_{x} = \frac{1}{x}, \ w'_{y} = \frac{1}{v}, \ w'_{9$ кстремума функции

$$z = x^2 + y^2 + 3$$

- -1) (0;0;3) точка
- минимума
- 2) (0;0;3) точка
- максимума
- 3) (3;0;0) точка минимума
- 4) (3;0;0) точка
- максимума

По 5) экстремумов нет 1. $S=\iint_D \sqrt{1+(f'x)^2}$ стремится к 1) равен нулю определению нулю; вычисляется: 2) достигает двойной 2. Укажите 1) площадь максимальной интеграл это геометрический поверхности длины предел двойной смысл двойного 3) равен нулю или z=f(x,y), где Dинтегральной интеграла вида не существует проекция 4) не равен нулю и суммы $\iint_D f(x,y) dx dy$ поверхности на параллелен оси $\iint_{D} f(x,y) dxdy$ плоскость оху , если f(x,y) ≥ 0Oz2) площадь для любых 5) может быть , если области D $(x,y)\in D$, произвольным 1) предел не 3) площадь зависит от вектором $D \subset (oxy)$ боковой способа 10. Укажите верное 1) площадь поверхности утверждение. разбиения поверхности области D на цилиндрического Φ ункция z = xyцилиндрического тела, где 1) имеет части; тела: $D \subset (oxy)$ 2) предел 2) объем единственную 4) общая точку максимума зависит от цилиндрического площадь (0;0)способа тела; поверхности разбиения 3) площадь 2) имеет цилиндрического области D на единственную области D; тела точку минимума части; 4) объем 5. Укажите (0;0)3) предел не цилиндра; области, зависит от 3) имеет несколько 3. Площадь правильные в выбора точек P_k плоской области точек экстремума $\in \Delta S_k$ D вычисляется направлении оси 4) не имеет точек oy экстремума 4) предел по формуле: 1 зависит от 5) имеет $S_D = I$ бесконечное выбора точек P_k $S_D = J$ $\in \Delta S_k$ множество точек $S_D = \int$ экстремума 5) предел $S_D = |$ существует;

4.

6) диаметр

разбиения

области на части

По

формуле

Тест рубежного

контроля к

модулю 2

0

y

2	у↑	7. Формула	1) не	2) предел общего
		замены	изменяется;	члена ряда равен
		переменной в	требует	нулю;
		двойном	перемены	3)
		интеграле имеет	местами х и у;	последовательно
		-	3) требует	
		вид	перемены	сть его
	0	$\iint_D f(x(U,V),y)$		частичных сумм
3	y f		4) <u>стано</u> витс	имеет конечный
	, _	U_x	я равным нулю;	предел;
		V_r	5) изменяет	4)предел модуля
			свой знак;	общего члена
		$\frac{2}{ f_x }$	10.	равен нулю;
		$ f_{U}^{'} $	[-1	5)последовательн
		8. Если	$\int_{L} z dx + x dy + y dz$	ость его
	0	кривую	1) 0;	частичных сумм
6.	 Вычислен	интегриро	$2)$ 4π ;	является
ие	двойного	вания AB разбивать	 3) -4π; 4) 2π; 	
интег		на части	5) -2π ;	бесконечно
интст	рала по	AC и CB ,	Тест	большой
облас	True D	*		
облас		ТО	рубежног	2. Дан
	ти D , иченной	*		 Дан сходящийся ряд.
	иченной	то <u>1 <i>Pa</i></u>	рубежног о контроля к модулю	, ,
огран	иченной	$ \begin{array}{c c} & & & \\ \hline 1 & & & \int_{AB} Pa \\ \hline 2 & & & \int_{AB} Pd \end{array} $	рубежног о контроля	сходящийся ряд.
огран	иченной $x=a,$ $y=c, y=d,$	$ \begin{array}{c c} & & & \\ \hline 1 & & & \int_{AB} Pa \\ \hline 2 & & \int_{AB} Pa \\ \hline 3 & & \int_{AB} Pa \end{array} $	рубежног о контроля к модулю	сходящийся ряд. При
огран линия $x=b$, своди	иченной $x=a,$ $y=c, y=d,$	$ \begin{array}{c c} & & & & \\ \hline 1 & & & \int_{AB} Pa \\ \hline 2 & & \int_{AB} Pa \\ \hline 3 & & \int_{AB} Pa \end{array} $	рубежног о контроля к модулю 3	сходящийся ряд. При отбрасывании
огран линия $x=b$, своди	иченной $x=a,$ $y=c, y=d,$ тся к	$ \begin{array}{c c} & & & \\ \hline 1 & & & \int_{AB} Pa \\ \hline 2 & & & \int_{AB} Pa \\ \hline 3 & & & \int_{AB} Pa \end{array} $	рубежног о контроля к модулю 3 1. Закончить	сходящийся ряд. При отбрасывании нескольких его
огран: $x=b$, своди произ двух	иченной $x=a,$ $y=c, y=d,$ тся к	$ \begin{array}{c c} & & & \\ \hline 1 & & & \int_{AB} Pa \\ \hline 2 & & \int_{AB} Pa \\ \hline 3 & & \int_{AB} Pa \\ \hline 4 & & \int_{AB} Pa \end{array} $	рубежног о контроля к модулю 3 1. Закончить утверждение:	сходящийся ряд. При отбрасывании нескольких его ненулевых
огран: $x=b$, своди произ двух незави	иченной $x=a$, $y=c$, $y=d$, тся к введению	$ \begin{array}{c c} TO \\ \hline 1 & \int_{AB} Pa \\ \hline 2 & \int_{AB} Pa \\ \hline 3 & \int_{AB} Pa \\ \hline 4 & \int_{AB} Pa \\ \hline 5 & \int_{AB} Pa \\ \hline $	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется	сходящийся ряд. При отбрасывании нескольких его ненулевых членов
огран $x=b$, своди произ двух незави интегр	иченной $x=a$, $y=c$, $y=d$, тся к введению	$ \begin{array}{c c} & TO \\ \hline 1 & \int_{AB} Pa \\ \hline 2 & \int_{AB} Pa \\ \hline 3 & \int_{AB} Pa \\ \hline 4 & \int_{AB} Pa \\ \hline 5 & \int_{AB} Pa \\ \hline 9. & \Piри \end{array} $	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется сходящимся,	сходящийся ряд. При отбрасывании нескольких его ненулевых членов 1) ряд останется еходящимся и
огран $x=b$, своди произ двух незави интегр	иченной $x=a$, $y=c$, $y=d$, тся к ведению исимых ралов, если имеет вид	то 1	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется сходящимся, если » 1)	сходящийся ряд. При отбрасывании нескольких его ненулевых членов 1) ряд останется еходящимся и его сумма
огран $x=b$, своди произ двух незави интегр	иченной $x=a$, $y=c$, $y=d$, тся к введению исимых ралов, если имеет вид	$ \begin{array}{c c} & TO \\ \hline 1 & \int_{AB} Pa \\ \hline 2 & \int_{AB} Pa \\ \hline 3 & \int_{AB} Pa \\ \hline 4 & \int_{AB} Pa \\ \hline 5 & \int_{AB} Pa \\ \hline 9. & \Piри \end{array} $	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется сходящимся, если » 1) последовательно	сходящийся ряд. При отбрасывании нескольких его ненулевых членов 1) ряд останется еходящимся и его сумма обязательно не
огран $x=b$, своди произ двух незави интегр	иченной $x=a$, $y=c$, $y=d$, тся к введению исимых ралов, если имеет вид	то 1	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется сходящимся, если » 1) последовательно сть его	сходящийся ряд. При отбрасывании нескольких его ненулевых членов 1) ряд останется еходящимся и его сумма обязательно не изменится;
огран $x=b$, своди произ двух незави интегр	иченной $x=a$, $y=c$, $y=d$, тся к введению исимых ралов, если имеет вид	то 1	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется сходящимся, если » 1) последовательно сть его частичных сумм	сходящийся ряд. При отбрасывании нескольких его ненулевых членов 1) ряд останется еходящимся и его сумма обязательно не изменится; 2)ряд останется
огран $x=b$, своди произ двух незави интегр	иченной $x=a$, $y=c$, $y=d$, $x=a$, $y=c$, $y=d$,	то 1	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется сходящимся, если » 1) последовательно сть его частичных сумм имеет конечный	сходящийся ряд. При отбрасывании нескольких его ненулевых членов 1) ряд останется еходящимся и его сумма обязательно не изменится; 2)ряд останется сходящимся, и
огран $x=b$, своди произ двух незави интегр	иченной $x=a$, $y=c$, $y=d$, $y=c$, $y=d$, $y=c$, $y=d$,	то 1	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется сходящимся, если » 1) последовательно сть его частичных сумм	сходящийся ряд. При отбрасывании нескольких его ненулевых членов 1) ряд останется еходящимся и его сумма обязательно не изменится; 2)ряд останется
огран $x=b$, своди произ двух незави интегр	иченной $x=a$, $y=c$, $y=d$, $x=a$, $y=c$, $y=d$,	то 1	рубежног о контроля к модулю 3 1. Закончить утверждение: «Ряд называется сходящимся, если » 1) последовательно сть его частичных сумм имеет конечный	сходящийся ряд. При отбрасывании нескольких его ненулевых членов 1) ряд останется еходящимся и его сумма обязательно не изменится; 2)ряд останется сходящимся, и

отброшенных	4. Для числового	сходимость	2
элементов не	ряда	∞ ,	если существует
равна 0;	1 2 3 4	$\sum P_k$	сходится;
3)ряд станет	$\frac{1}{2} + \frac{2}{5} + \frac{3}{8} + \frac{4}{11} +$		3
расходящимся;		2)из	если существует
4)ряд останется	укажите	расходимости	сходится
сходящимся и	предел	œ	4
его сумма	общего	$\sum\limits_{k=1}^{\infty}P_{k}$ ряда $k=1$	если существует
обязательно	члена:	ряда $k=1$	сходится
	$\frac{1}{2}$;	следует	5 все указанные утв
уменьшится;	1,14,	сходимость	7. Интерменти и
5) не зная членов	<u>1</u>	∞ ,	7. Интегральный
ряда ничего	2) 3;	$\sum P_k$	признак Коши
нельзя сказать о	2) 0.	k=1 ;	сходимости
сходимости или	3) 0;	3)из сходимости	числового ряда
расходимости	4) [∞] ;	ω,	∞
нового ряда.	5. Если для рядов	$\sum_{k=1}^{\infty} P_k$	$\sum_{k=1}^{\infty} P_k$
3. Необходимым	c c	ряда $k=1$	<i>k=m</i> c
признаком		следует	невозрастающим
сходимости ряда	положительными	сходимость	И
•	∞ Σ D	œ	положительными
$\sum_{n=0}^{\infty} U_n$	$\sum_{k=1}^{\infty} P_k$ членами $k=1$ и	$\sum_{k=1}^{n} P_k$	членами
n=1 является:	MINIMINI PI	<i>K</i> =1 ;	заключается в
1 $\lim_{n \to \infty} U_n = 0$	$-\infty$ $\sum P_{k}$	6 Признак	том, что (при
<u>n</u> →∞	-k=1 выполняет	<u>Дал</u> амбера	соответствующе
$\lim_{n \to \infty} \sum_{k=1}^{n} U_k =$,	сходимости	м подборе
$ \begin{array}{c c} & n \to \infty \ k=1 \\ \hline 3 & \lim U_n = C \end{array} $	$rac{1}{\cos P_k} \le P_k \frac{1}{10} \frac{1}{10} \frac{1}{10} \frac{1}{10}$	чис лового ряда	функции P
$n \rightarrow \infty$	(укажите		функции 1
$\lim_{n \to \infty} \frac{1}{U_n} = 0$	неверное	$\sum_{k=0}^{\infty} P_{k}$	$\int P(x)dx$
$n \to \infty U_n$ 5 верный ответ о	от сунение).	<u>k=1</u> c	1) если -∞
з верный ответ с	тсу ченвует тие). 1)из сходимости	положительными	сходится, то ряд
	тупо слодимости	$\overline{\text{чле}}$ нами P_k	сходится
	$\overset{\infty}{\Sigma}$ B	заключается в	∞ $\int D(x) dx$
	$\sum\limits_{k=1}^{\sum}P_{k}$	том, что	$\int P(x)dx$ 2) если m
	следует	1	расходится, то
			-
			етряд сходится
		сходится	

$\int_{0}^{\infty} P(x) dx$	ряда	2) полученный	$F(x,y,y',\dots,y^n)=0$
3) если <i>m</i>	∞ <u>1</u>	ряд сходится	называется
сходится, то ряд	$\sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{3n-1}$	абсолютно;	функция
сходится	n=1 $3n-1$	3) полученный	$y = y(x)_{ecnu}$
4) если	1) ряд сходится	ряд расходится;	она
	условно, но не	4) про	1) удовлетворяет
$\int_{-\infty}^{\infty} \frac{P_{k+1}(x)}{P(x)} dx$	сходится	полученный ряд	начальным
$_{m}^{J}P(x)$	абсолютно;	ничего нельзя	условиям;
сходится, то ряд	2) ряд сходится	сказать;	2) n pa3
сходится	абсолютно, но не		дифференцируем
8.	условно;	\mathbf{IV}	а на промежутке
Знакочередующи	3) ряд сходится	семестр	I;
йся ряд	условно и	Тест	3) монотонна на
$P_1 - P_2 + P_3 - P_4 + \dots$	абсолютно;	рубежног о	промежутке I;
	4) ряд	контроля	4) обращает при
сходится	расходится;	к модулю1	подстановке
(признак	5) верное		уравнение в
Лейбница), если	утверждение	1. Дифференциа	тождество;
1)	отсутствует;	ЛЬНЫМ	3. Общим
$P_1 < P_2 < P_3 < P_4 < .$	10. Известно, что	уравнением	интегралом
•	,	называется	дифференциальн
2)	$\sum_{i=1}^{\infty} u_i$	уравнение, в	ого уравнения
$P_1 > P_2 > P_3 > P_4 >$.	$\sum_{n=1}^{\infty} u_n$	которое	$F(x, y, y', \dots, y^n) = 0$
2)	сходится	неизвестная	является
3)	условно. Что	функция входит	семейство
$P_1 > P_2 > P_3 > P_4 > \dots$	можно сказать	1) под знаком	функций вида
11/12/13/14/		интеграла;	1)
4)	$\sum_{n=0}^{\infty} u_n^3$	2) под знаком	,
	$\sum_{n=1}^{u_n}$ про ряд $n=1$,	производной или	$ \varphi(x, y, c_1, \dots, c_n) = 0 $ 2) $y = \varphi(x, c)$
$P_1 > P_2 > P_3 > P_4 >$.	составленный из	дифференциала;	3)
9. Укажите	его кубов?	3) под знаком	$\varphi(x, y, c_1, c_2) = 0$
верное	 полученный 	логарифма;	4)
утверждение для	,	4) в неявном виде;2. Решением	$y = c_1 \varphi(x) + c_2$
знакочередующег	•	дифференциальн	4. Задачу Коши
энино городующог	условно;	OLO Ababhenna	для

для

дифференциальн

уравнения

ОГО

ося

ого уравнения	1) изотерм;	переменными	определенного
первого порядка	2) Эйлера;	являются	комплекса
dy f(v, v)	3)	уравнения вида:	условий S ,
$\frac{dy}{dx} = f(x, y),$	неопределенных	1)	результатом
формулируют	коэффициентов;	f(y) dy = g(x) dx	которого
следующим	4) изоклин;	2) y' = f(x,y)	является тот или
образом	 Уравнение 	$3) y' = f(\frac{y}{x})$	иной исход,
(укажите	семейства	<i>4)</i>	называется
правильные	изоклин для	y' = g(x) p(y)	4 (
варианты	дифференциальн	9. Однородным)
ответа):	ого уравнения	дифференциальн	5 (
1) Найти решение	,	ым уравнением)
y(x) такое, что	$\frac{dy}{dx} = x^2 + y^2$	первого порядка	6 3
$y(x_0) = y_0$	имеет вид:	называется	2.
2) Найти решение	1) y = kx,	уравнение вида:	Рассмотрим
y(x) такое, что	2)	y' = f(x, y) f(x)dx = g(y)	испытание: из
$y(x_0) = f(x_0, y_0)$	$x^2 + y^2 = k, k \ge 0$	ay' + by + c =	урны,
	; 	$y' = f\left(\frac{y}{x}\right)$	содержащей 3
<i>3)</i> Найти	3) $y = kx + b$, 4) $y = kx^2$,	10. K	белых и 7
интегральную		однородным	черных шаров,
кривую,	· · · · · · · · · · · · · · · · · · ·	дифференциальн	
проходимую	решение	ым уравнениям	2
через заданную	дифференциальн	можно привести	один шар. $A-$
точку (x_0, y_0) ;	ого уравнения	AMODALOWIA DILIA	
4) Найти семейство	(x+1)dy+xyd	y' = f(x, y), eq	достали белый
интегральных	среди	y' = f(ax + bx) $P(x,y)dy + Q(x,y)dy + Q(x$	шар и В –
кривых вида	предложенных	p(x,y)dy + Q(y) + p(x) = f(y)	достали черный
$y=\varphi(x, c)$	функций:	Тест	шар являются:
5 II	$1) \qquad \qquad x = (x + 1) e^{-x}$	рубежног о	4 Pae
5. Для ~	$y = (x+1) e^{-x}$ 2) $y = (x+1) e^{x}$ 3) $y = (x-1) e^{x}$	контроля) 5 Εδί
приближенного	3) $y = (x-1)e^x$	к модулю 2.) возмож
построения	4)	2. Противоположными	, 333,1001
интегральных	$y = (x-1) e^{-x}$	Возникновение	
кривых	8. Уравнениями	или	3. Установите
используется	c	преднамеренное	соответствие
метод	разделяющимися	создание	между

создание

событиями и	появиться только	величины и ее	1)ee
вероятностями, с	с одной из	дисперсией;	разброс;
которыми эти	гипотез H_1 , H_2 ,	3)	2)ee
события	\dots , H_n	значениями	среднее
произойдут	образующих	случайной	значение;
А) При подбрас	ыв инин у н грал рули туюст	и выпадатычимо сыков,	3)ee
большее 1	событий, то	математическим	асимметрию;
		ных и 10 красных шаров, ожиданием;	10.
наугад доста С) При подбрас	или белый шар количественную ывании двух монет выпа	8 γπ zanh u najura	Укажите
С) При пооорис	переоценку	м геро и решки. Функция	справедливые
4.Количество	априорных	распределения	утверждения
способов,	(известных до	F(x) MONOT	для функции
которыми можно	испытания)	MOREI	распределения
сформировать	вероятностей	принимать	случайной
экзаменационны	гипотез можно	следующие	величины:
й билет из трех	ПО	значения:	
вопросов, если Формуле полной веро		1) От 0 Формуле Пуассона	$1 \qquad 0 \le F(x) \le$
всего 25)	3P 88 T;	$F(x) \geq 0$
вопросов, равно	5	2) От 0 Формуле Муавра-Лапласа	,
1 2500)	$\partial o + \infty$;	Тест
)		3)Диапазо	рубежного
5.Равенство	7.Закон	н значений	контроля к
$P(AB) = P(A) \cdot P(A)$		функции	модулю 3.
	распределения	распределения	1.
имеет место для	дискретной	зависит от	Совокупность
	случайной	значений	всех подлежащих
событий	величины	случайной	изучению
I = I	Гроизвольных Произвольных	величины;	объектов или
)	связь между:	9.	возможных
2 H	<i>Іесовмест</i> ных	Математическое	результатов всех
3 (значениями Совместных	ожидание	мыслимых
)	Совместных случайной	дискретной	наблюдений,
6.Если	величины и их	случайной	
произошло	вероятностями;	величины	производимых в
coбытие A ,	2)значени	характеризует:	неизменных
которое может	ями случайной		условиях над

одним объектом,	2)конкрет	1)статисти	распределения	
называется	ный набор	ческое	может принимать	
1)	данных,	распределение;	любые значения	
выборка;	полученный в	2)статисти	в интервале	
2)	результате	ческий ряд;	(-m +m)	
генеральная	эксперимента;	3)ни один	$(-\infty, +\infty)$	
совокупность;	3)генераль	из предложенных	2)	
3)	ная	вариантов не	Эмпирическая	
статистика;	совокупность;	является верным;	функция	
2.Последо	4.	6.Эмпири	распределения	
вательность,	Реализация	ческая функция	может принимать	
полученная в	выборки – это	распределения	любые значения	
результате	1)	случайной	в интервале	
расположения в	случайным	величины X –	(m± 01	
порядке	образом	это	$[0,+\infty)$	
неубывания	отобранные	F(x)	3)	
элементов	элементы	ϕ ункция $F_n(x)$	Эмпирическая	
выборки	выборки;	определяющая	функция	
называется	2) набор	для каждого 🌣	распределения	
1)статисти	конкретных	относительную	может принимать	
ческий ряд;	данных,	частоту события	любые значения	
2)ряд	полученных в	1)	в интервале [0,1];	
распределения;	результате	$\{X \ge x\}$	8.	
3)вариаци	эксперимента;	2)	Гистограмма	
онный ряд;	3)	${X = x}$	является	
3.	эксперимент,	3)	приближением	
Выборка – это	проводимый над	$\{X < x\}$	1)	
1)последо	выборкой;	•	функции	
вательность	5.	7. Какое	распределения;	
независимых	Оценкой	из следующих	2)	
одинаково	неизвестной	утверждений <i>явл</i>	плотности	
распределенных	функции	яется верным?	распределения;	
случайных	распределения	1)	3)	
величин;	является	Эмпирическая	статистического	
		функция	распределения;	

9.	тестовый вопрос:	число	4)
Выборочное	1 балл выставляется	В	Выпо
среднее является	студенту, если	триго	лните
оценкой	ответ правильный; 0	номет	дейст
1)	баллов	ричес	вия:
медианы;	выставляется студенту, если	кой	a)
2)	ответ	форме	$(1+i)^2(1-i)^2$
среднеквадратич	неправильный.	:	; б)
еского		$(1+i)^{10}$	
отклонения;			$\frac{7-i}{7+i} - \frac{2+3i}{2-3i}$
3)	Задачи	,	, в)
математического	для	$\sqrt[3]{3-3i}$;	$(7 - 7i)^5$
ожидания;	самостоятельно	·	; Γ)
10.	го решения.	3)	$\sqrt[4]{-1-i}$
Выборочная	1 семестр.	<i>э)</i> Найди	ν-1- <i>ι</i>
дисперсия имеет	Комплексные	наиди те	
размерность	числа и		5) Vicensei
1)такую	операции над	модул и и	Укажи
же, как и	ними.		те
исследуемая	1)	аргум енты	МНОЖЕ
случайная	Вычи	енты	ства
		οπρπι	
величина;	слите:	следу	точек
величина; 2)квадрат	слите:	ющих	компл
		ющих компл	компл ексно
2)квадрат	слите:	ющих компл ексны	компл ексно й
2)квадрат размерности	слите:	ющих компл ексны х	компл ексно й плоск
2)квадрат размерности исследуемой	слите: (3 – 4 <i>i</i>)	ющих компл ексны х чисел:	компл ексно й плоск ости,
2)квадрат размерности исследуемой случайной величины; 3)выбороч	слите: $(3-4i)i$;	ющих компл ексны х чисел: a)	компл ексно й плоск ости, задан
2)квадрат размерности исследуемой случайной величины; 3)выбороч ная дисперсия	слите: (3 – 4 <i>i</i>)	ющих компл ексны x чисел: a) $z_1 = \sqrt{3} - i$	компл ексно й плоск ости, задан ных
2)квадрат размерности исследуемой случайной величины; 3)выбороч	слите: $(3-4i)i$; $\frac{(i+1)^5}{(i-1)^3}; (2$	ющих компл ексны х чисел: a)	компл ексно й плоск ости, задан ных соотн
2)квадрат размерности исследуемой случайной величины; 3)выбороч ная дисперсия является	слите: $(3-4i)i$;	ющих компл ексны x чисел: a) $z_1 = \sqrt{3} - i$	компл ексно й плоск ости, задан ных соотн ошени
2)квадрат размерности исследуемой случайной величины; 3)выбороч ная дисперсия является	слите: $(3-4i)i$; $\frac{(i+1)^5}{(i-1)^3}; (2$	ющих компл ексны x чисел: a) $z_1 = \sqrt{3} - i$; 6)	компл ексно й плоск ости, задан ных соотн ошени ями.
2)квадрат размерности исследуемой случайной величины; 3)выбороч ная дисперсия является безразмерной. Критерии и методика	слите: $(3-4i)i$ \vdots $\frac{(i+1)^5}{(i-1)^3}; (2$ 2)	ющих компл ексны x чисел: a) $z_1 = \sqrt{3} - i$ $;$ 6) $z_2 = -6i$	компл ексно й плоск ости, задан ных соотн ошени ями. Выпо
2)квадрат размерности исследуемой случайной величины; 3)выбороч ная дисперсия является безразмерной. Критерии и	слите: $(3-4i)i$; $\frac{(i+1)^5}{(i-1)^3}; (2$ 2) Вычи	ющих компл ексны x чисел: a) $z_1 = \sqrt{3} - i$ $;$ 6) $z_2 = -6i$ $;$ B)	компл ексно й плоск ости, задан ных соотн ошени ями.

Один

	черте		действ		$A = \begin{pmatrix} 1 & 6 & 2 \\ 2 & 2 & 1 \end{pmatrix}$	$\begin{bmatrix} 0 & -1 & 3 \\ 2 & 0 & 3 \end{bmatrix}$
	жи.		ительн		$A = \begin{pmatrix} 1 & 6 & 2 \\ 3 & -2 & -1 \\ 5 & 4 & 0 \end{pmatrix}$	$\begin{vmatrix} 2 & 0 & 2 \\ 5 & -4 & 1 \end{vmatrix}$
	A)		ЫХ			
	$ z-3 \ge 3$		чисел?		и	;
	; б)		Лине		И	
	0 < Im z + I		йная			1 3 3 - 2
			алгеб		(0 -3 4)	2 2 5 - 2
	Бина		pa.		$B = \begin{pmatrix} 0 & -3 & 4 \\ 0 & 3 & 2 \\ -2 & 5 & -1 \end{pmatrix}$	1 3 2 - 3
	рные	1)	Пусть		\-2 5 -1/	•
	отно		даны		5)	Найди
	шени		матри		•	те
	я и их		цы		Найди	матри
	свойс				те 3А-	цу,
	тва.		/2		4B,	обрат
1.	Ка		$A = \begin{pmatrix} 3 \\ 5 \end{pmatrix}$		A^2	ную к
	кие				,	данно
	бинар		И		B^2	й
	ные		-	2)	•	**
	операц			3)	Решит	. /-2
	ии		$B = \begin{pmatrix} -1 \\ 3 \end{pmatrix}$		е СЛУ,	$1) A = \begin{pmatrix} -2 \\ -4 \end{pmatrix}$
	опреде		Ü		испол	
	лены				ьзуя	; 2)
	на		Найди		метод	
	множе		те		Γaycca	_
	стве:		A+2B,		$\Box 2x$	$B = \begin{pmatrix} 1 & 2 \\ 3 & 0 \\ -2 & 1 \end{pmatrix}$
	a)				$\begin{array}{c} 2x \cdot \\ 3x + \end{array}$	$B = \begin{pmatrix} 3 & 0 \\ -2 & 1 \end{pmatrix}$
	натура		$A \cdot B$,		∃ <i>x</i> -	
	льных		A	4)	Вычи 6)	Решит
	чисел,		$B^{\cdot A}$.		слите	e
	б)	2)	Пусть		опред	систе
	рацио		даны		елите	МЫ
	нальн		матри		ли:	уравн
	ЫХ		цы			ений,
	чисел,					испол
	в)					ьзуя
						- 5 <i>j</i>

a)	решит	<u>прямо</u>	точке
метод	e ee	<u>уголь</u>	$O_1(3;-4)$
Гаусса	метод	<u>ных</u>	-1(-/ -/
•	OM	коорд	
b)	Гаусса	инат	Извес
прави	,	<u>(парал</u>	ТНЫ
ЛО	если	<u>лельн</u>	стары
Краме	она	<u>ый</u>	e
pa;	совме	перен	коорд
c)	стна:	<u>oc</u>	инаты
обрат		осей,	точки
ную	$\begin{bmatrix} 2x_1 - x_1 \\ 3x_1 + x_2 + \end{bmatrix}$	повор	M(7,8)
матри	_	<u>OT</u>	.Опре
цу.		<u>осей</u>	делит
1.	Элеме	<u>коорд</u>	e
	нты	<u>инат).</u>	новые
2x + 4y	анали	1)	коорд
3x + 6y + $4x - y -$	тичес	Сдела	инаты
	кой	Н	этой
2.	геоме	парал	же
2x - y	трии	лельн	точки.
$\begin{bmatrix} x + 2y \end{bmatrix}$	$\underline{\Pi}$	ый	2)
[-x+3y]	рямоу	перен	Систе
3)	<u>гольна</u>	oc	ма
Иссле	<u>R</u>	осей	коорд
дуйте	систе	коорд	инат
на	<u>Ma</u>	инат,	повер
совме	<u>коорд</u>	приче	нута
стнос	<u>инат</u>	M	на
ТЬ	<u>на</u>	новое	угол
систе	плоск	начал	,
му	<u>ости</u>	0	$\alpha = \frac{\pi}{6}$
уравн	<u>Преоб</u>	распо	6
ений	разова	ложен	
И	ние	ОВ	Опред

елите	те	1)	коорд
новые	коорд	Найди	инаты
коорд	инаты	те	M,
инаты	точки	длины	если,
точки	М в	сторо	M
M(новой	Н	M_1
$\sqrt{3}$	систе	треуго	(1;-4),
√3	ме	льник	$M_2(2;8)$
3).	коорд	a c	$M_2(2,0)$
3)	инат.	верши	-
Дана	$\underline{\Pi}$	нами	3) Ha
точка	роекц	В	оси
M(4,5	<u>RN</u>	точка	ордин
;5,5).	<u>отрезк</u>	X	ат
3a	<u>a.</u>	A(3,2)	найди
новые	<u>Прост</u>	, B(-	те
коорд	<u>ейшие</u>	1,-1),	точку,
инатн	<u>задачи</u>	C(11,-	равно
ые	<u>на</u>	6).	удале
оси	плоск	2)	нную
приня	ости	Точка	ОТ
ты	(делен	M	точек
прямы	<u>ие</u>	делит	A(10,8
e2x-	<u>отрезк</u>	отрезо) и В(-
1=0	<u>а в</u>	К	6,4).
(ось	<u>данно</u>	M_1M_2	4)
O w'	<u>M</u>	111112	Найди
$O_1y'_{)}$	<u>отнош</u>	на	те
, 2y-	ении,	части	длины
5=0	рассто	В	медиа
(ось	<u>яние</u>	отнош	Н
O_1x'	между	ении	треуго
	<u>двумя</u>	1:2.	льник
).	<u>точка</u>	Найди	a c
Найди	<u>ми).</u>	те	верши

нами	ми:	абсци	угол
В		cc.	
точка	$A\left(4;\frac{\pi}{4}\right);$	3) B	$\frac{\pi}{3}$
X	47	поляр	3.
A(3,2)		ной	<u>Пряма</u>
, B(-	2)	систе	<u>R</u>
1,-1),	Найди	ме	<u>линия</u>
C(11,-	те	коорд	<u>на</u>
6).	поляр	инат	плоск
$\underline{\mathbf{y}}$	ные	состав	ости:
<u>равне</u>	коорд	ьте	уравн
ние	инаты	уравн	<u>ение</u>
<u>линии</u>	точки	ение:	<u>прямо</u>
<u>на</u>	M(1,	a)	<u>й с</u>
плоск	[a	окруж	<u>углов</u>
ости в	$\sqrt{3}$),	ности	<u>ым</u>
декарт	если	c	коэфф
овой и	полюс	центр	ициен
<u>поляр</u>	совпа	OM B	TOM;
<u>ной</u>	дает с	полюс	<u>общее</u>
<u>систе</u>	начал	е; б)	уравн
<u>me</u>	OM	полуп	<u>ение</u>
коорд	коорд	рямой	<u>прямо</u>
<u>инат.</u>	инат, а	,	<u>й;</u>
1)	поляр	прохо	уравн
Постр	ная	дящей	ение
ойте	ось-с	через	<u>прямо</u>
точки,	полож	полюс	<u>й,</u>
задан	итель	И	прохо
ные	ным	образ	дящей
поляр	напра	ующе	<u>через</u>
ными	влени	й с	<u>2</u>
коорд	ем	поляр	<u>задан</u>
ината	оси	ной	<u>ные</u>
		осью	<u>точки;</u>

	TT 1/		
<u>УГОЛ</u>	Найди	нной	ность,
между	те:	ИЗ	<u>гипер</u>
<u>Двумя</u>	1)	точки	<u>бола,</u>
<u>прямы</u>	уравн	<i>C</i> ;	<u>параб</u>
<u>ми</u> ;	ения	5)	<u>ола).</u>
<u>услов</u>	сторо	внутр	1)
<u>ие</u>	Н	енние	Соста
парал	ΔABC	углы	вьте
<u>лельн</u>	;	ΔABC	уравн
ости и	2)	•	ение
перпе	уравн	6)	окруж
ндику	ение	длину	ности,
<u>лярно</u>	медиа	высот	y
сти	ны,	ы,	котор
<u>двух</u>	прове	опуще	ой
<u>прямы</u>	денно	нной	центр
<u>X.</u>	й из	ИЗ	наход
<u>Рассто</u>	верши	точки	ится в
яние	ны <i>В</i> ;	A на	точке
<u>OT</u>	3)	сторо	O(-
<u>точки</u>	уравн	ну	1,4) и
<u>до</u>	ение	BC.	радиу
<u>прямо</u>	средн	Выпо	c
<u>й.</u>	ей	лните	равен
На	линии	черте	3.
плоск	,	Ж.	Выпо
ости	парал	<u>Лини</u>	лните
задан	лельн	<u>И</u>	черте
ы три	ой <i>ВС</i>	второг	Ж.
точки	4)	<u>o</u>	2) Дан
A(0,1),	уравн	поряд	эллип
B(6,5),	ение	<u>ĸa</u>	c
<i>C</i> (12,	высот	<u>(илле</u>	

пс,

<u>окруж</u>

-1).

Ы,

опуще

 $\frac{x^2}{25} + \frac{y^2}{9} = 1$

Найди	черте	2)	$_{ ext{ы}}\ ec{a}_{ ext{ iny M}}$
те его	ж.	$x^2 - y^2$	_
полуо	Π	x y	$ec{b}$
си и	ривед	3)	Постр
рассто	ение	$2y^2 - 2y$	ойте
яние	<u>общег</u>		вектор
между	<u>o</u>	4)	ы: 1)3
фокус	<u>уравн</u>	$x^2 + y^2$	
ами.	ения	•	$\vec{a}_{;2)}$
Выпо	<u>линии</u>	<u>Линей</u>	
лните	<u>второг</u>	ные	$\frac{1}{2}\vec{b}$
черте	<u>o</u>	прост	2
ж.	поряд	ранст	3)-
3)	<u>ка к</u>	ва	2)
Дана	<u>канон</u>	Π онят	$\frac{3}{6}$
гипер	<u>ическ</u>	ие	$\frac{3}{2}\vec{a}$
бола	<u>ому</u>	<u>вектор</u>	4)
00314	<u>виду.</u>	<u>ав</u>	-2(
x^2 v^2	Приве	прост	
$\frac{x^2}{9} - \frac{y^2}{25} =$	дите	ранст	$\vec{a} + \vec{b}$
	уравн	$\underline{\text{Be}}\underline{R^n}$.)
Найди	ения	<u>Линей</u>	5) -3(
те ее	кривы	ные_	
полуо	хк	опера	$ec{a}-ec{b}$
си,	канон	<u>ции</u>).
рассто	ическ	над	2) B
яние	ому	вектор	прави
между	виду и	<u>ами и</u>	льном
фокус	выпол	<u>их</u>	шести
	ните	<u>их.</u> <u>свойс</u>	
ами и	черте		уголь
асимп	жи:	<u>тва.</u> 1)	нике <i>АВСО</i>
тоты.	1)	т <i>)</i> Даны	
Выпо			EF
лните	$5x^2 + 2y$	вектор	$\overrightarrow{AB} = \overrightarrow{a}$

,	2) и	OB	рное
$\overrightarrow{BC} = \vec{b}$	<i>B</i> (5,8,-	$\overrightarrow{AB}, \overrightarrow{AC}, \overrightarrow{A}$	произ
BC = b	1).	AD,AC,F	веден
•	2)	•	ие
Выраз	Норм	Колли	вектор
ите	ируйт	неарн	$_{ m OB}$ $ec{a}_{ m M}$
через	e	ы ли	
$ec{a}_{_{ m H}}ec{b}_{ m Be}$	вектор	данны	$ec{b}_{,}$
-	$\vec{a} = 3\vec{\imath}$	e	22777
кторы		вектор	если
$\overrightarrow{CD}, \overrightarrow{DE}, \overrightarrow{1}$	$+4\vec{J}$ -	ы?	$ \vec{a} = 2, \vec{b} $
, ,	→	Литер	[4] 2,[5]
	$_{12}\vec{k}_{.}$	атура:	=3,
<u>Базис.</u>	3)	[1]	$\varphi=<(\vec{a}$
<u>Разло</u>	Даны	стр.	$\varphi = \langle (u) \rangle$
<u>жение</u>	верши	80-82,	,
<u>векто</u>	ны	[5]	·
<u>ра по</u>	тетраэ	стр.45	$\vec{b}) = \frac{\pi}{2}$
базису	дра	-48	3
±	ABCD	(ч.1).	
<u>Коорд</u>	:A(-	<u>Скаля</u>	2)
<u>инаты</u>	1,3,6),	рное	Найди
<u>векто</u>	B (2,-	произ	те
ра и	2,1),	<u>веден</u>	
<u>его</u>	C (-	<u>ие</u>	$(5\vec{a}+3\vec{b},2\vec{a}$
<u>длина.</u>	1,0,1),	двух	
1)	D(4,6,	вектор	, если
Найди	-3).	ОВ И	$ \vec{a} = 2, \vec{b} $
$_{\mathrm{Te}}\overrightarrow{AB}$	Найди	его	181 27 21
	те	<u>свойс</u>	$=3$ \vec{a}
И	коорд	<u>TBa.</u>	,
$ \overrightarrow{AB} $	инаты	1)	$=3$, \vec{a} $\perp \vec{b}$.
**** ,	И	Найди	3)
если	длины	те	<i>3)</i> Даны
A(1,3,	вектор	скаля	
	Бектор		верши

НЫ		<u>ие</u>	дь	<u>ие</u>
тетраэ		двух	парал	<u>rpex</u>
дра		вектор	лелог	вектор
ABCD		ов и	рамма	ов и
: <i>A</i> (1,-		его	,	<u>его</u>
3,6), <i>B</i>		<u>свойс</u>	постр	свойс
(-		тва.	оенно	<u>TBa.</u>
2,2,1),	5)	Опред	го на 3.	На
C		елите	вектор	йдите
(4,0,1)		И	ax	смеша
, D(-		постр		нное
4,6,-		ойте	$ec{a}$ и $ec{b}$	произв
3).		вектор		едение
Найди			, если	вектор
те		$\vec{c} = [\vec{a}, \vec{b}]$	÷(, ,	ов (
внутр			$\vec{a}(6,3,-1)$, → ,
енние		, если	Вы	$\vec{a}, \vec{b}, \vec{c})$
углы		1)	числит	, если
Aina		$\vec{a} = 3\vec{i}$	е	
Δ_{ABC}		a = 3t	площа	\vec{a} (2,-
и Д			дь	1,-1),
PCD(,	треуго	\vec{b}
BCD($\vec{b} = 2\vec{k}$	льника	(1.2
испол			C	(1,3,-
ьзуя		, 2)	верши	1), č
скаля		→ → . -	нами в	(1,1,4)
рное		$\vec{a} = \vec{i} + \vec{j}$	точках	
произ			A(1,1,	Будут
веден		,	1),B(2,	ли эти
ие).		$\vec{b} = \vec{i} - \vec{j}$	3,4),C(вектор
_			4,3,2).	Ы
<u>Векто</u>			<u>Смеш</u>	компл
рное	6)	Вычи	анное	анарн
<u>произ</u>		слите	произ	ы?
<u>веден</u>		площа	произ	

<u>веден</u>

	2)	задачи	услов	ский
	Найди		<u>ие</u>	образ
	те	<u>Уравн</u>	парал	предс
	объем	<u>ение</u>	<u>лельн</u>	тавляе
	треуго	повер	ости и	Т
	льной	<u>XHOCT</u>	перпе	кажда
	пирам	И И	<u>ндику</u>	ки к
	иды с	<u>линии</u>	<u>лярно</u>	систе
	верши	<u>B</u>	<u>сти</u>	M
	нами	прост	плоск	уравн
	В	ранст	остей;	ений:
	точка	Be.	рассто	1) <i>y</i> =0,
	X	<u>Уравн</u>	яние	z=0;
	A(2,2,	<u>ение</u>	<u>OT</u>	2)y-
	2),	плоск	<u>точки</u>	<i>4</i> =0,
	B(4,3,	ости:	<u>до</u>	z+6=
	3),	<u>общее</u>	плоск	0;
	C(4,5,	уравн	ости.	3)
	4),	ение;	1)	$x^2 + y^2 + z^2$
	D(5,5,	уравн	Каку	x 1 y 1 Z
	6).	<u>ение</u>	Ю	, y=5;
4.	Оп	плоск	повер	4))
	редели	ости,	хност	$x^2 + y^2 + z^2$
	те	<u>прохо</u>	Ь	-
	высоту	<u>дящей</u>	опред	, z=1?
	пирам	через	еляет	3)
	иды	<u>три</u>	уравн	Соста
	Н	<u>задан</u>	ение	вьте
	$H_{D_{j}}$	<u>ные</u>	$x^2 + y^2$	уравн
	исполь	точки;	-	ение
	зуя	<u>угол</u>	?	плоск
	услови	между	2)	ости,
	Я	плоск	Какой	прохо
	преды	<u>ОСТЯМ</u>	геоме	дящей
	дущей	<u>и;</u>	триче	через

точки:	ОТ	<u>угол</u>	,-1),
$M_{1(1,}$	точки	между	D(5,7,
	A(-	<u>двумя</u>	8).
1, -1),	2,6,-1)	<u>прямы</u>	Соста
$M_{2(-}$	до	<u>ми;</u>	вьте
2, 3,	плоск	услов	уравн
4),	ости	<u>ие</u>	ения
M	4x	парал	всех
$M_{3(1,}$	-3y+5	<u>лельн</u>	гране
2, 3).	z=8.	ости и	йи
Выпо	<u>Уравн</u>	перпе	ребер
лните	<u>ения</u>	<u>ндику</u>	тетраэ
черте	<u>прямо</u>	<u>лярно</u>	дра.
Ж.	<u>й в</u>	сти	2.
4)	прост	двух	Найди
Найди	ранст	<u>прямы</u>	те
те	Be:	<u>X</u> ;	канон
угол	канон	рассто	ическ
между	ическ	яние	ие и
плоск	ие и	<u>OT</u>	парам
ОСТЯМ	парам	<u>точки</u>	етрич
$_{\rm H}$ $(P_1$	<u>етрич</u>	<u>до</u>	еские
	<u>еские</u>	<u>прямо</u>	уравн
): <i>x</i> -2 <i>y</i>	<u>уравн</u>	<u>й.</u>	ения
$+2z^{-}-8$	ения;	1.	прямо
= 0 и (<u>задан</u>	Даны	й:
$P_{2)}$:x	<u>ие</u>	верши	$\begin{cases} 2x - y + 3z \\ 5x + 4y - z \end{cases}$
	<u>прямо</u>	ны	
+ z -	<u>й как</u>	тетраэ 5.	Зад
<i>6</i> = <i>0</i> .	<u>линии</u>	дра	айте
5)	перес	A(0,1,	пряму
Найди	<u>ечени</u>	0),	ю как
те	я двух	B(6,0,	линию
рассто	плоск	5),	пересе
яние	<u>остей;</u>	C(0,12	чения

двух 6.	Co	M(3,-	<u>ĸa</u>
плоско	ставьт	2,5),	(сфер
стей	e	перпе	<u>a</u> ,
$\frac{x-y}{2} = \frac{y+}{-3}$	параме	ндику	<u>эллип</u>
2 -:	тричес	лярно	<u>соиды</u>
•	кие	прямо	a
<u>Взаим</u>	уравне	й	<u>гипер</u>
<u>ное</u>	ния		<u>болои</u>
распо	прямо	$\frac{x-3}{-1} = \frac{y+}{3}$	<u>ды,</u>
<u>ложен</u>	й,	-1 3	<u>параб</u>
<u>ие</u>	проход		<u>олоид</u>
<u>прямо</u>	ящей	3)	<u>ы</u> ,
<u>й и</u>	через	Найди	конус
плоск	точку	те	<u>ы).</u>
ости в	M(1,2,	точку	1) Опред
прост	-1)	перес	елите
ранст	перпе	ечени	коорд
<u>Be:</u>	ндику	Я	инаты
<u>услов</u>	лярно	прямо	центр
<u>ие</u>	плоск	й	а и
парал	ости		радиу
<u>лельн</u>	<i>x</i> +2 <i>y</i> -	$\frac{x+5}{2} = \frac{y+}{-2}$	c
ости и	<i>4z-</i>	2 -2	сферы
<u>перпе</u>	<i>3</i> = <i>0</i> .	И	:
<u>ндику</u>	2)	плоск	a)(x + 1)
<u>лярно</u>	Соста	ости	+
<u>сти;</u>	вьте	<i>x</i> +2 <i>y</i> -	'
<u>угол</u>	уравн	3z-	$(y+2)^2 + z^2$
между	ение	<i>6=0</i> .	
<u>прямо</u>	плоск	Повер	б)
<u>й и</u>	ости,	XHOCT	2. 2. 2
плоск	прохо	<u>——</u>	$x^2 + y^2 + z^2$
<u>остью</u>	дящей	<u>-</u> <u>второг</u>	2) Каки

поряд

<u>o</u>

через

точку

e

повер

	хност	1,0,1),	высот	2семе
	И	D(-	y	стр
	опред	4,6,-	ΔABC	Введе
	еляют	3).	,	ние в
	В	Найди	опуще	анали
	прост	те:	нную	3.
	ранст	1)	ИЗ	<u>Понят</u>
	ве	коорд	верши	<u>ие</u>
	уравн	инаты	ны B ;	функц
	ения:	AB,	4)	<u>ии</u>
1)		AC,	объем	<u>одной</u>
-)		AD;	тетраэ	перем
	$x^2 = 4y;$	2)	дра	енной.
	291	внутр	ABCD	<u>Облас</u>
		енние	(испо	<u>Tb</u>
		углы	льзуя	<u>опред</u>
	Плос	ΔABC	смеша	<u>елени</u>
	кость	(испо	нное	<u>и к</u>
	И	льзуя	произ	<u>множе</u>
	прям	скаля	веден	ство
	ая в	рное	ие) и	значе
	прост	произ	высот	<u>ний.</u>
	ранст	веден	y	<u>Обрат</u>
	ве.	ие);	тетраэ	ная и
	Даны	3)	дра,	сложн
	верши	площа	опуще	<u>ая</u>
	ны	ДЬ	нную	функц
	тетраэ	ΔABC	из D ;	<u>ии.</u>
	дра	(испо 7.	ypa	<u>Элеме</u>
	ABCD	льзуя	внения	нтарн
	:	вектор	ребер	<u>ые</u>
	A(1,3,	ное	И	функц
	<i>6),B(2</i>	произ	граней	ии и
	,2,1),	веден	тетраэ	<u>их</u>
	C(-	ие) и	дра.	графи

	<u>ки.</u>	СТЬ	1.	$3n^5-2$
	<u>Моно</u>	или	Докаж	$\lim \frac{3n^5 - 2}{n^5 + 3\sqrt[3]{n}}$
	тонно	нечет	ите,	
	<u>сть</u>	ность	что	
	функц	указан	110	Литер
	<u>ий.</u>	ных	$\lim \frac{(-1)^n}{}$	атура:
	<u>Огран</u>	выше	$\lim \frac{n}{n}$	[1]
	<u>иченн</u>	функц	При	стр. 151-
	<u>ость</u>	ий.	при	151-
	функц	3.	$n \to \infty$	[5]
	<u>ий.</u>	Будут		стр.14
8.	На	ли эти	2.	2-
	йдите	функц	Найди	- 147(ч.
	област	ИИ	те	1).
	Ь	огран	преде	<u>Преде</u>
	опреде	иченн	лы	<u>л</u>
	ления	ыми?	при	<u>функц</u>
	И	<u>Число</u>		<u>ии.</u>
	множе	вая	$n \to \infty$	Однос
	ство	после		торон
	значен	<u>довате</u>	$\lim_{n \to \infty} \frac{5n^2-3}{3n^2+1}$	ние_
	ий	<u>льнос</u>	3n ² +	преде
	следу	<u>ть и</u>	•	<u>лы.</u>
	ющих	<u>ee</u>	,	<u>Teope</u>
	функц	преде	$\lim \frac{n!-(n-1)!}{n!}$; $\lim (\sqrt{n!})$	$\sqrt{n^{\text{Mbl 0}}} - \sqrt{n}$
	ий:	<u>П.</u>	n!	<u>преде</u>
	$y = \frac{x-2}{2x-1}$	<u>Виды</u>); lim	лах
	2.4 - 1	неопр), <i>um</i>	функц
	;	<u>еделе</u>		<u>ий.</u>
	$y = \sqrt{1 + 1}$	<u>нност</u>	$\sqrt{n+\sqrt{n+\sqrt{n}}}$	<u>Вычи</u>
	$y - \sqrt{1}$	ей и	$\frac{\sqrt{n+\sqrt{n+\sqrt{n}}}}{\sqrt{n+2}}$	<u>слени</u>
	2.	<u>ИХ</u>		<u>e</u> _
	Устан	раскр	;	преде
	овите	<u>ытие.</u>		<u>ЛОВ.</u>
	четно			Перв

преде	<u>сложн</u>	2.
лы:	<u>ой</u>	, ,
$\lim_{n\to\infty}\frac{C}{C}$	функц	$\ln\left(x+\sqrt{x}\right.+$
$\mu \rightarrow \infty$	<u>ии.</u>	3.
	<u>Дифф</u>	
,	еренц	f(x) = sinx
lim (1)	<u>иал.</u>),
$n \to \infty$	<u>Произ</u>),
	<u>водны</u>	f'''(x)-?
;	<u>е</u> и	4.
	<u>диффе</u>	т.
$\lim_{n\to\infty}\frac{C}{C}$	ренци	f(x) = tg(x)
	<u>алы</u>	5.
•	высш	J.
	<u>их</u>	$f(x) = \cos(1$
$\lim_{x\to 0} (1$	<u>поряд</u>	Прори
	KOB.	<u>Прави</u>
,	Вычи	<u>ло</u>
	слите	<u>Лопит</u>
$\lim_{n\to\infty} \left(\frac{x^2+3}{x^2}\right)$	указан	<u>аля.</u> В ши
$n \rightarrow \infty$ λ	ные	Вычи
•	произ	слите
Дифф	водны	следу
еренц	е или	ющие
иальн	диффе	преде
ое и	ренци	лы:
интег	алы 9.	
ральн	следу	2 1/
oe	ющих	$\lim_{x \to 4} \frac{x^2 - 16}{x^2 - 5x + 1}$
исчис	функц	
ление	ий:	;
•	1.	
<u>Произ</u>		$\lim_{x\to 1} \left(\frac{1}{\ln x} - \frac{1}{\ln x}\right)$
<u>водна</u>	f(x) = 2	inx
	лы: $\lim_{n\to\infty} \frac{1}{n}$; $\lim_{n\to\infty} (1 + \frac{1}{n}) = \frac{1}{n}$; $\lim_{n\to\infty} \frac{1}{n} = \frac{1}{n}$; $\lim_{n\to\infty} \frac{1}{$	лы: $O\ddot{u}$ функц ии. $H_{n\to\infty}$ функц ии. $H_{n\to\infty}$ функц ии. $H_{n\to\infty}$ функц ии. $H_{n\to\infty}$ функц иал. $H_{n\to\infty}$ формация $H_$

<u>R</u>

слите

);

$\lim_{x\to 0} \frac{\sqrt[3]{}}{}$	возрас	<u>ь и</u>	переги
$x \to 0$	тания	вогну	ба
·	И	тость	график
;	убыва	<u>графи</u>	ОВ
x'	ния	<u>ĸa</u>	указан
$\lim_{x\to a} \frac{x'}{x'}$	следу	функц	ных
	ющих	<u>ии.</u>	выше
•	функц	<u>Точки</u>	функц
	ий:	перег	ий.
$\lim_{x\to 4}\frac{\sqrt[4]{x-2}}{\sqrt{x-4}}$	f(x) = 2	<u>иба.</u>	<u>Асим</u>
$x \rightarrow 4 \sqrt{x-4}$ 11.	Ис 12.	На	птоты
	следуй	йдите	графи
;	те на	интерв	<u>ка</u>
	экстре	алы	функц
$\sqrt{x+}$	мум	выпук	<u>ии.</u>
$\lim_{x\to+\infty}\frac{\sqrt{}}{\sqrt{}}$	следу	лости	<u>Иссле</u>
	ющие	И	<u>дован</u>
· •	функц	вогнут	<u>ие</u>
Интер		ости	функц
валы	ии: 1)	график	<u>ий и</u>
возрас	$y = \frac{x}{x}$	ОВ	постр
тания	$y = \frac{x}{x^2 + 4}$	следу	оение
И	Пуутан	ющих	графи
убыва	Литер	функц	<u>KOB.</u>
ния	атура:	ий: 14.	На
функц	[1]	$y = \frac{x}{x^2 + 4}$	йдите
ии.	стр.21	x-+4	асимпт
Локал	0-211,	•	оты и
ьный	[5]		постро
экстре	стр.17	y = (2 -	йте
мум.	4-	y - (z	график
Ha	178(ч.		И
йдите	1).	Ук	функц
интерв	<u> Быпу</u>	ажите	ий:
алы	<u>клост</u>	точки	

10.

	$y = \frac{x^2 + 2}{x}$	<u>свойс</u>	2)	,
	x	<u>TBa.</u>		
		<u>Основ</u>	$\int \frac{x dx}{\sqrt{x^2+1}} dx$	$\int \frac{dx}{x^2 + 8x + 16};$
15.	Ис	ные	$\int \sqrt{x^2+1} dx$	$\int x^2 + 8x + 16'$
	следуй	<u>метод</u>		
	те	<u>PI</u>	,	,
	функц	интег	3 ,	
	ию	риров	$\int \frac{x^3 dx}{1+x^8}$;	$\int \frac{dx}{(x-2)(x-3)}$
		<u>ания</u>		$\int_{(x-2)(x-3)}^{(x-2)(x-3)}$
	x^3	(сведе		
	$y = \frac{x^2}{x^2 - 1}$	ние	3)	,
	И	<u>табли</u>		
	постро	<u>чных</u>	∫ xsin2x	$\int x^2 + 2 dx$
	йте ее	<u>интег</u>		$\int \frac{x^2+2}{x^2+1} dx;$
	график	ралов,	<u>Интег</u>	
		<u>замен</u>	риров	2)
	Интег	<u>a</u>	ание	s dx s =
	ральн	перем	рацио	$\int \frac{dx}{\sqrt{1-x}}$; $\int \sqrt{1}$
	0e	енной,	<u>нальн</u>	
	исчис	<u>интег</u>	<u>ых и</u>	<u>Опред</u>
	ление	риров	иррац	<u>еленн</u>
	функ	<u>ание</u>	<u>ионал</u>	<u>ый</u>
	ции	<u>по</u>	<u>ьных</u>	<u>интег</u>
	одной	<u>частя</u>	функц	рал и
	перем	<u>M).</u>	<u>ий.</u>	<u>его</u>
	енной	Вычи	Вычи	<u>свойс</u>
	<u>Перво</u>	слите	слите	тва
	<u>образ</u>	следу	следу	<u>Форм</u>
	<u>ьорь</u> ная <u>,</u>	ющие	ющие	ула_
	<u>неопр</u>	интег	интег	<u>Ньют</u>
	<u>еделе</u>	ралы:	ралы:	она-
	<u>нный</u>	1)	1)	<u>Лейбн</u>
	<u>интег</u>		- /	ица.
	рал и	$\int \frac{x^3 + 4x + 1}{\sqrt{x}}$	$\int \frac{dx}{x^2 - 6x - 1}$	В
	<u>их</u>	\sqrt{x}	$x^2 - 6x - 7$	ычисл
				

ите	ы,	нием	неско
следу	огран	вокру	льких
ющие	иченн	г оси	перем
интег	ой	Ox	енны
ралы:	линия	фигур	х.
$\int_{4}^{9} (x$	ми:	Ы,	<u>жонМ</u>
•		огран	ества
•	y = tgx,	иченн	<u>B</u>
,		ой	прост
c-1 /-		линия	ранст
$\int_{-12}^{-1} \sqrt{4}$	2)	МИ	$\underline{R^n}$.
1	Вычи	$y^2 = 9x,$	
$\int_{0}^{1} xe^{x}$	слите	y = 9x,	<u>Функ</u>
J	площа	<u>Несоб</u>	<u>ции <i>п</i></u>
<u>Прило</u>	ДЬ	ствен	=
<u>жения</u>	плоск	ные	перем
<u>опред</u>	ой	интег	<u>енных</u>
<u>еленн</u>	фигур	<u>ралы</u>	(n=2,3
<u>000</u>	ы,	<u>1-го и</u>	<u>).</u> Прана
<u>интег</u>	огран	<u>2-го</u>	Преде
рала	иченн	типа.	<u>ЛЫ И</u>
<u>(вычи</u>	ой	Вычи	<u>непре</u>
<u>слени</u>	линия	слите	рывно
<u>e</u>	ми:	следу	<u>сть.</u> 1.
площа	y = lnx,	ющие	т. Найди
дей,		интег	те
<u>длин</u>	3)	ралы:	област
<u>дуг и</u>	Опред	$\int_{0}^{+\infty} e^{-4a}$	Ь
<u>т.д.).</u>	елите	J_{0}	опред
1)	объем		елени
Вычи	тела,	3-й	Я
слите	образ	семес	функц
площа	ованн	тр.	ии и
дь	ОГО	Функ	выпол
фигур	враще	ции	22111011

ните	$\frac{x+3y}{x+y};3)z=e^{\frac{x}{y}}$	функц	1)
черте	x+y, $x+y$	ий:	$\iint (x-3y)dx$
ж:		1)	$\int \int (\lambda - 3y) dx$
1)	Литер		(D)
	атура:	$z = \sin^{\frac{x}{2}}$	2)
$z = \sqrt{y^2}$	[1]	у	$\iint (1+4x^2)dx$
v -	стр.36	1	JJ (I 1 1 1) (
2	4-365,	$\frac{1}{+yx^2}$	(D)
2.	[5]		3)
Вычи	стр.19	2.	∬ xdxdy,где
слите	2-	Иссле	јј лилиу, где
следу	193(ч.	дуйте	(D)
ющие	1).	на	<u>Криво</u>
преде	<u>Частн</u>	экстре	<u>линей</u>
лы:	<u>ые</u>	мум	ные
1) $\lim_{x \to \pi, y \to \infty}$	<u>произ</u>	функц	интег
-	<u>водны</u>	ии.	ралы
3. Vanasas	<u>е и</u>	1)	<u>1-го и</u>
Укажи	диффе	$z = x^2 +$	<u>2-го</u>
те	ренци		<u>типа.</u>
точки	алы	<u>Двой</u>	Вычи
разры	<u>Экстр</u>	ные	слите
ва	емум	<u>интег</u>	интег
графи	функц	ралы,	ралы:
ка функц	<u>ии 2-х</u>	<u>их</u>	$1.\int ydx + \frac{x}{y}dx$
функц ии:	перем	<u>свойс</u>	<i>,</i>
ии. 1)	енных	тва и	, где
1)	•	<u>вычи</u>	L-
$x^2 \pm x^2$	1.	<u>слени</u>	дуга
$Z = \frac{x^2 + y^2}{yx}$	Найди	<u>e.</u>	криво
-	те dz	Вычи	й
2) z=	для	слите	$y = e^{-x}$ or T
	следу	интег	
	ющих	ралы:	(L

)

$2.\int (x -$	первы	рядов:	ряды.
,где	е три	1)	<u>Обоб</u>
.гдо Lдуга	элеме		щенн
криво	нта	∇^{∞} 1	<u>ый</u>
_	число	$\sum_{n=0}^{\infty} \frac{1}{2^n};$	<u>гармо</u>
й	ВОГО		ничес
$y = x^2$ –	ряда	4.Исс	<u>кий</u>
Ряды	•	ледуй	ряд.
ГХОВІ	$\sum \frac{3n-2}{n^2+1}$.	те	Доста
·	\sum_{n^2+1}	ряды	<u>точны</u>
<u>Число</u>	2.	на	<u>e</u>
<u>вые</u>	3апиш	сходи	призн
ряды.		мость,	аки
<u>Основ</u>	ите	испол	сходи
<u>ные</u>	прост	ьзуя	мости
<u>ТRНОП</u>	ейшу	необх	знако
<u>ия.</u>	Ю	одимо	<u> толож</u>
<u>Сумм</u>	форму	e	<u>итель</u>
<u>a</u> _	лу n—	услов	<u>ных</u>
ряда.	ΓΟ	ие	 рядов:
Основ	элеме	сходи	призн
ные	нта	мости	аки
свойс	ряда:	ряда	сравн
<u>TBa</u>	$1 + \frac{1}{3} + \frac{1}{5}$	1)	<u>ения,</u>
рядов.		1)	призн
<u>Необх</u>	+	∇^{∞} 5n	
<u>ОДИМ</u>		$\sum_{n=1}^{\infty} \frac{5n}{100}$	<u>аки</u> Папам
<u>ый</u>	$\frac{1}{9}+\cdots$	2)	<u>Далам</u>
<u>призн</u>	9	; 2)	<u>бера и</u>
<u>ak</u>	3.Най	5.*	Коши,
<u>сходи</u>	дите	$\sum_{n=1}^{\infty} \frac{5n}{10n}$	<u>интег</u>
мости	сумм		<u>ральн</u>
<u>ряда.</u>	Ы		<u>ый</u>
1.	следу	<u>Поло</u>	<u>призн</u>
Найди	-	жител	<u>ак</u>
те	ющих	<u>ьные</u>	<u>Коши.</u>

Иссле	<u>ак</u>	$4)\sum_{n=1}^{\infty}$	$\sum_{n=0}^{\infty} (-1)^n \frac{(3)^n}{n!}$
дуйте	<u>Лейбн</u>		
следу	ица.	5)	
ющие	<u>Знако</u>	,	2.Опр
ряды	перем		едели
на	енные	$4)\sum_{n=1}^{\infty}$	тепри
сходи	<u>ряды.</u>		$ \mathbf{x} \leq 1$
мость:	<u>Абсол</u>	<u>Функ</u>	сумму
1)	<u>ютная</u>	циона	ряда
	<u>и</u>	льные	1+x+x
$\sum_{n=1}^{\infty} \frac{1}{n^2}$	услов	ряды.	² +
n²	ная	Облас	$X^n + \dots$
2)	сходи	<u>Tb</u>	И
-/	мость.	<u>сходи</u>	иссле
	Иссле	мости	дуйте
$\sum_{n=1}^{\infty} \frac{4\sqrt{n}}{\sqrt[4]{n}}$	дуйте	мости	его на
V	следу	<u>-</u> <u>Равно</u>	равно
; 4)	ющие		мерну
, ,	ряды	мерна	Ю
∑∞ 100°	на	NOTH REPORTED TO THE PROPERTY OF THE PROPERTY	сходи
$\sum_{n=1}^{\infty} \frac{100^n}{n!}$	абсол	<u>сходи</u>	мость
	ютну	MOCTЬ.	на
$5)\sum_{n=1}^{\infty}\frac{2}{n}$	ю и	1.Най	отрезк
	услов	дите	e
; 8)	ную	област	[0,1].
	сходи	Ь	3.Исс
$\sum_{n=1}^{\infty} \frac{2^{n}}{n^{2}+1}$	мость:	сходи	ледуй
$-n^{-1}n^{3}+$	1)	мости	техара
	-,	рядов:	
<u>Знако</u>		1)	ктерсх
<u>черед</u>	$\sum_{n=1}^{\infty} (-1$	$\sum_{n=0}^{\infty} n(n+1)x^n$	ОДИМО
ующи			стисле
еся		, 2)	дующ
ряды.			ихряд
<u>Призн</u>			OB:
-			

1)		2)	степе	2^{x}_{B}
$\sum_{n=0}^{\infty} (1$	_		ням х	ряд
_ n=0 \		$\sum_{n=0}^{\infty} \frac{(x-1)^n}{n!}$	для	Тейло
2)		2 π−0	следу	ра по
		2)	ющих	степе
$\sum_{n=1}^{\infty} \frac{x^n}{n!}$	l -,	, 3)	функц	ням (х
n:		$\sum_{n=0}^{\infty} n(r)$	ий:	- 1).
Степе		$\Delta n=0$	1)	Перио
<u>нные</u>		, 4)	e^{2x} .	дичес
ряды.		, ,	,	кие
<u>Радиу</u>			2) sin(функц
<u>си</u>		$\sum_{n=0}^{\infty} (-1$	2	ии и
интер		D.	x^{2});	<u>их</u>
вал		<u>Pa</u>	2)1	<u>свойс</u>
сходи		<u>зложе</u>	3)ln	<u>тва.</u>
мости		ние		<u>Триго</u>
<u> </u>		<u>функц</u>	$\frac{1+x}{1-x}$	номет
- Найди		<u>ий в</u>	1-4;	ричес
те		степе	4)	<u>кая</u>
радиу		<u>нные</u>	7)	
с и		<u>ряды.</u>	4.0	систе
интер		<u>Ряд</u>	$\frac{x^{10}}{1-x}$	Ma dayyyyy
вал		<u>Тейло</u>	1-x	функц
сходи		<u>pa.</u>	5)	<u>ий,</u>
мости		<u>Ряд</u>	3)	<u>ee</u>
		<u>Макл</u>	~	<u>ортого</u>
следу		<u>орена.</u> 1.	$\frac{x}{1+x-2x^2}$	<u>нальн</u>
ющих				<u>ость.</u>
степе		Напи	;	<u>Разло</u>
нных		шите	2.	жение
рядов:		разло	Разло	функц
1)		жение	жите	<u>ий в</u>
		В	функц	<u>ряд</u>
$\sum_{n=0}^{\infty} \frac{(4}{n}$	n^2	степе	ию у =	<u>Фурье</u>
$\Delta_{n=0}$		нной		(T = 2)
		ряд по		

<u>#) .</u>	дом T	(или)	<u>Дифф</u>
<u>Ряды</u>	$=2\pi_{\mathrm{M}}$	косин	<u>еренц</u>
Фурье		усам)	<u>иальн</u>
дляче	3a	функц	<u>ые</u>
тных	данну	ию	уравн
<u>и</u>	ю на		ения
	проме	$f(x) = \frac{1}{2}$	перво
нечет	жутке	2	<u>ΓΟ</u>
<u>ных</u> функц	$[-\pi,\pi]$,	<u>поряд</u>
<u> ий.</u>	[- ,]	задан	<u>ка,</u>
	:	ную	<u>общее</u>
<u>Ряды</u>	f(x)	только	решен
Фурье		В	ие и
<u>ДЛЯ</u>	2.Разл	проме	<u>начал</u>
функц	ожите	жутке	<u>ьные</u>
ий с	в ряд		<u>услов</u>
перио	Фурье	$[0,^{\pi}].$	<u>ия.</u>
<u>дом Т</u>	функц	Дифф	Задача
<u>=21.</u>	ию f	еренц	<u>Коши.</u>
<u>Прим</u>	(x) ,	иальн	1.
ерные	задан	ые	Прове
<u>задачи</u>	ную	уравн	рьте,
<u>для</u>	на	ения	являю
<u>решен</u>	проме	<u>Задач</u>	тся ли
<u>. RN</u>	жутке	И,_	решен
1.Разл	[2,2]:	приво	ием
ожите	f(x) =	<u>дящие</u>	данны
в ряд	$f(x) = \{$	<u>K</u>	X
Фурье	3.Разл	<u>диффе</u>	диффе
функц	ожите	<u>ренци</u>	ренци
ию f	в ряд	<u>альны</u>	альны
(x),	Фурье	<u>M</u>	X
перио	по	<u>уравн</u>	уравн
дичес	синус	ениям	ений
кую с	ам	<u>-</u>	VIIIII
попио			

перио

указан	римен	M_{0}	<u>e</u>
ные	тальн	найди	<u>уравн</u>
функц	ЫМ	те	<u>ения.</u>
ии:	путем	завис	Найди
1)	устан	имост	те
xy' = 2y	овлен	Ь	общие
xy - 2y	о, что	между	или
;	скоро	колич	частн
2)	СТЬ	ество	ые
	радио	м не	решен
$y'' = x^2$	актив	распа	ия
	ного	вшего	следу
2.	распа	ся	ющих
Соста	да	вещес	диффе
вьте	пропо	тва М	ренци
диффе	рцион	И	альны
ренци	альна	време	X
альны	колич	нем t.	уравн
e	еству	<u>Дифф</u>	ений:
уравн	не	еренц	1)
ения	распа	<u>иальн</u>	
задан	вшего	<u>ые</u>	$(xy^2 + x)dx$
ных	ся		2)
семей	вещес	<u>уравн</u>	<i>2)</i>
СТВ	тва.	<u>ения с</u>	xyy' = 1 - x
кривы	Счита	<u>раздел</u>	
x:	я, что	<u>яющи</u> мися	3)
1)	начал	<u>МИСЯ</u> перем	, .
$y = C_1 e^2$	ьное	<u>перем</u>	y' = -y sin x
$y - c_1 c$	колич	<u>енны</u>	4)
	ество	<u>ми.</u> <u>Однор</u>	,
$x^2 + y^2$	вещес	_	$(x^2-1)y' +$
-	тва	<u>одные</u>	5)
3.	равно	диффе	,

ренци

<u>альны</u>

Экспе

(x+2y)dx

6) y'=	ющих	решен	1)
	диффе	<u>ия и</u>	$2y'' + x^3 = -$
$\frac{x+y}{}$.	ренци	начал	
$\frac{x+y}{x-y}$;	альны	ьные	2)
	X	<u>услов</u>	y''' = sinx +
_	уравн	<u>ия.</u>	
<u>Линей</u>	ений:	<u>Задача</u>	3)
ные	1)	Коши.	y'' = lnx.
диффе	xy'-2y	<u>Пони</u>	0.7
ренци	xy Zy	жение	<u>Общи</u>
<u>альны</u>	2)	<u>поряд</u>	<u>e</u>
<u>e</u>		<u>ka</u>	<u>сведе</u>
уравн	$y' - \frac{2}{x}y$:	<u>диффе</u>	<u>о кин</u>
ения	x	<u>ренци</u>	<u>линей</u>
перво	; 3)	<u>ально</u>	<u>ных</u>
<u>ro</u>	, -/	<u>ro</u>	<u>диффе</u>
поряд	y' + yct	<u>уравн</u>	ренци
<u>ка.</u>	y Tyet,	<u>ения.</u>	<u>альны</u>
<u>Уравн</u>	4)	Найди	<u>X</u>
ения	4)	те	<u>уравн</u>
<u>Берну</u>	xy' + y:	общие	<u>ениях</u>
<u>лли.</u>	5)	или	<u>второг</u>
<u>Уравн</u>	3)	частн	<u>o</u>
ения в	$2x\cos^2 y$	ые	<u>поряд</u>
<u>полны</u>	Дифф	решен	<u>ка.</u>
<u>X</u>	еренц	ИЯ	<u>Линей</u>
диффе		следу	<u>ные</u>
ренци	<u>иальн</u>	ющих	<u>однор</u>
алах.	<u>ые</u>	диффе	<u>одные</u>
Найди	уравн	ренци	<u>диффе</u>
те	ения	альны	<u>ренци</u>
общие	второг	Х	<u>альны</u>
решен	<u>0</u>	уравн	<u>e</u>
ия	поряд	уравн ений:	<u>уравн</u>
следу	<u>ка, их</u>	спии.	<u>ения</u>
· •	<u>общие</u>		

второг	3)	ия	<u>поряд</u>
<u>o</u>	y''-2y'	диффе	<u>ка.</u>
<u>поряд</u>	<i>y</i> 2 <i>y</i>	ренци	Решит
ка с	; 4)	альны	e
посто	y'' + 4y'	X	следу
<u>иннк</u>		уравн	ющие
<u>МИ</u>		ений	систе
<u>коэфф</u>	<u>Линей</u>	2-го	МЫ
<u>ициен</u>	<u>ные</u>	поряд	диффе
тами.	<u>неодн</u>	ка:	ренци
Найди	<u>ородн</u>	1)	альны
те	<u>ые</u>	$\alpha'' \perp A\alpha'$	X
общие	<u>диффе</u>	y'' + 4y'	уравн
или	<u>ренци</u>	2)	ений:
частн	<u>альны</u>	y'' + 3y	
ые	<u>e</u> _		1)
решен	<u>уравн</u>	3)	
ия	ения	y'' + 2y	$\left(\begin{array}{c} dy \\ y \end{array}\right) = y + \frac{1}{2}$
диффе	<u>второг</u>		$\begin{cases} \frac{dy}{dx} = y + \\ \frac{dz}{dx} + y + 3z \end{cases}$
ренци	<u>o</u>	4)	$\left(\frac{dz}{dx} + y + 3z\right)$
альны	<u>поряд</u>	y'' - 3y'	
X	<u>ка с</u>		•
уравн	посто	~	2)
ений	<u>иння</u>	<u>Систе</u>	2)
2-го	<u>МИ</u>	<u>мы</u> 	
по-	<u>коэфф</u>	<u>линей</u>	(dy
рядка:	<u>ициен</u>	<u>ных</u>	$\int \frac{dy}{dx} + 3y + 4$
1)	тами.	<u>диффе</u>	$\begin{cases} \frac{dy}{dx} + 3y + 4 \\ \frac{dz}{dx} - y - z \end{cases}$
	Найди	ренци	(ax
y'' + y'	те	<u>альны</u>	П
2)	общие	<u>X</u>	росте
ar!! 2ar	или	уравн	йшие
y'' + 2y'	частн	<u>ений</u>	диффе
	ые	перво	ренци

<u>Γ0</u>

решен

альны

e	частн	й	устан
уравн	ых	интег	овлен
ения в	произ	рал	о, что
частн	водны	уравн	скоро
ЫХ	X.	ения:	сть
произ	1.	1)	радио
водны	Найди		актив
Х.	те	$x\frac{dz}{dx} + y$	ного
Дифф	функц	dx dx	распа
еренц	ию z		да
иальн	=z(x,	2)(пропо
ые	<i>y</i>) ,		рцион
уравн	удовл	$x^2 + y^2$)	альна
ения	етворя		колич
перво	ющую	<u>Мате</u>	еству
го	диффе	матич	не
поряд	ренци	еское	распа
ка,	ально	модел	вшего
линей	му	ирова	СЯ
ные	уравн	<u>ние</u>	вещес
относ	ению	приро	тва.
итель	$\frac{dz}{dx} =$	<u>дных</u>	Счита
но	2.	проце	я, что
частн	Решит	CCOB	начал
ЫХ	e	<u>(задач</u>	ьное
пр	уравн	<u>И ИЗ</u>	колич
ОИЗВО		ectect	ество
дных.	ение:		вещес
Типы		<u>возна</u> ния).	тва
уравн	$\frac{d^2x}{dy^2} = 6y$	<u>ния).</u> 1)	равно
ений	dy^2		-
второг		Экспе	M_{0}
0	3.Най	римен	найди
поряд	дите	тальн	те
ка в	общи	ЫМ	завис
		путем	-

имост	содер	Извес	e
Ь	жащее	тно	вещес
между	СЯ В	также,	тва
колич	опред	что по	переш
ество	еленн	мере	ло в
м не	OM	прибл	раство
распа	объем	ижени	р, тем
вшего	e	я к	мень
СЯ	раство	насы	ше
вещес	рител	щенно	скоро
тва М	я, не	му	сть
И	может	раство	перех
време	превз	py	ода.
нем t.	ойти	умень	Соста
2)	некот	шаетс	вьте
(Закон	орого,	Я	закон
перех	опред	колич	перех
ода	еленн	ество	ода
вещес	ого	вещес	вещес
тва в	для	тва,	тва в
раство	каждо	перех	раство
p.)	го	одяще	p.
Извес	вещес	го в	3)
тно,	тва,	раство	Скоро
ЧТО	числа	р за	сть
при	P,	едини	размн
фикси	соотве	цу	ожени
рован	тству	време	Я
ной	ющег	ни.	бактер
темпе	0	Иным	ий
ратуре	насы	И	пропо
колич	щенно	слова	рцион
ество	му	ми,	альна
вещес	раство	чем	ИХ
тва,	py.	больш	колич

	еству.	мате	Я	4.
	В	мати	цифра	Сколь
	начал	ческа	четна	ко
	ьный	Я	я, а	ЕИТКП
	момен	cmam	вторая	начны
	т t=0	исти	нечет	X
	имело	ка.	ная?	чисел
	сь Хо	<u>Элеме</u>	2.	НЖОМ
		<u>нты</u>	Сколь	0
	бакте	<u>комби</u>	кими	состав
	рий, а	натор	спосо	ить из
	В	<u>ики</u>	бами	цифр
	течен	(прав	могут	0,1,2,3
	ие а	<u>ила</u>	разме	,4,
	часов	сложе	ститьс	испол
	ИХ	ния и	я 4	ьзуя
	число	<u>умно</u>	пасса	кажду
	удвои	жения	жира	Ю
	лось.	· •	В	цифру
	Найти	<u>число</u>	четыр	В
	завис	перес	ехмес	любо
	имост	танов	тной	M
	Ь	OK,	каюте	числе
	колич	разме	?	лишь
	ества	щени	3.	один
	бакте	<u>й,</u>	Сколь	раз?
	рий от	сочета	КО	5.
	време	<u>ний).</u>	диаго	Сколь
, .	ни.	1. У	налей	КИМИ
4-й сем	-	скольк	В	спосо
	Теори	ИХ	выпук	бами
	Я	двузна	лом п-	НЖОМ
	вероя	чных	уголь	0
	<i>тнос</i>	чисел	нике?	состав
	тей и	перва		ИТЬ

дозор	<u>ности</u>	являет	заним
из	СУММ	СЯ	аются
двух	<u>ы и</u>	отлич	стрель
солдат	произ	ником	бой.
И	<u>веден</u>	?	Найти
ОДНОГ	<u> </u>	хорош	вероят
0	<u></u>	ИСТОМ	ность,
офице	случа	?	что
pa,	<u>йных</u>	2) B	наугад
если		учебн	вызва
имеют	 ий).	ой	нный
ся 10	1) B	групп	студен
солдат	учебн	e 40	т не
и 3	ой	студен	заним
офице	групп	TOB.	ается
pa?	е из	20	стрель
<u>Случа</u>	25	студен	бой
<u>йные</u>	студен	ТОВ	(собы
<u>событ</u>	тов: 5	актив	тие
<u>ия.</u>	_	но	A).
<u>Понят</u>	отлич	заним	3)
<u>ие</u>	ники,	аются	Имею
вероят	20 –	рукоп	тся
ности	хорош	ашны	три
случа	исты.	M	одина
<u>йного</u>	Каков	боем,	ковых
<u>событ</u>	a	15	урны,
<u>ия.</u>	вероят	заним	содер
<u>Свойс</u>	ность,	аются	жащи
<u>TB2</u>	что	лыжн	X
вероят	наугад	ЫМ	соотве
<u>ности</u>	вызва	спорт	тствен
(теоре	нный	ом и 5	но 2, 4
мы о	студен	студен	и 6
вероят	T	тов	белых

шаров	вероят	И,	третье
И	ность,	приче	го –
ящик,	ЧТО	м 50%	0.15.
В	ЭТОТ	из них	Каков
котор	шар -	изгото	a
ом 6	белый	влены	вероят
белых	?	первы	ность
и 12	<u>Форм</u>	M	того,
черны	ула	цехом,	ЧТО
X	<u>полно</u>	30% -	детал
шаров	<u>й</u>	вторы	Ь
	вероят	М И	наудач
Науга	ности.	20%	y
Д	<u>Форм</u>	-треть	взятая
выбир	<u>улы</u>	им.	c
ают	<u>Байес</u>	Вероя	конве
урну	<u>a</u> ,	тност	йера -
и ее	<u>Берну</u>	Ь	брако
содер	лли,	изгото	ванна
жимо	<u>Пуасс</u>	влени	я?
e	она,	Я	2)
перес	<u>Лапла</u>	брако	Имею
ыпаю	<u>ca.</u>	ванно	тся
T B	1) Ha	й	три
ящик,	конве	детал	одина
a	йер	и для	ковых
затем	подаю	перво	конве
ИЗ	тся	го	рта. В
ящика	детал	цеха	перво
выни	и,	равна	M
мают	изгото	0.05,	конве
один	вленн	для	рте 15
шар.	ые	второг	контр
Каков	тремя	o - 0.1	ОЛЬНЫ
a	цехам	и для	X

работ	наугад	есть	ИЗГОТО
ПО	конве	семян	влени
инфор	рта	ржи	R
матик	вынул	состав	детал
е, во	И	ляет	И
второ	контр	90%.	высше
M - 10	ольну	Чему	го
контр	Ю	равна	сорта
ОЛЬНЫ	работ	вероят	на
X	у по	ность	данно
работ	инфор	того,	M
ПО	матик	что из	станке
инфор	e.	7	равна
матик	Найти	посея	0.4.
е и 5	вероят	нных	Найти
контр	ность	семян:	вероят
ОЛЬНЫ	того,	взойд	ность
X	ЧТО	ет 5?,	того,
работ	контр	взойд	ЧТО
ПО	ольна	ут от	среди
матем	Я	3 до 5	наудач
атике,	работ	семян	y
В	a	?	взяты
третье	взята	Найти	x 26
м — 15	ИЗ	наиве	детале
контр	перво	роятн	й
ольны	го	ейшее	полов
X	конве	число	ина
работ	рта	взоше	окаже
ПО	(собы	дших	тся
матем	тие	семян.	высше
атике.	A).	4)	го
Из	3)	Вероя	сорта.
выбра	Пусть	тност	5)
нного	всхож	Ь	Аудит
			5 · ·

орную	студен	незав	ние и
работ	TOB.	исим	диспе
у по	Дискр	ых	рсию
теори	етная	случа	случа
И	случа	йных	йной
вероят	<u>йная</u>	велич	велич
носте	<u>велич</u>	ИН	ины
й с	ина.	X 2	Z=2X
перво	<u>Закон</u>	P 0,4	+3Y.
ГО	<u>И</u>	Постр	<u>Непре</u>
раза	функц	ойте	<u>рывн</u>
успеш	<u> </u>	МНОГО	<u>ые</u>
НО	распр	уголь	<u>случа</u>
выпол	<u>еделе</u>	ники	<u>йные</u>
ТОІКН	ния.	распр	<u>велич</u>
50%	<u>Мате</u>	еделе	<u>ины.</u>
студен	матич	ний	Случа
TOB.	еское	для Х	йная
Найти	<u>ожида</u>	и Ү.	велич
вероят	ние и	2)	ина
ность	диспе	Найди	задана
того,	рсия.	те	плотн
что из	<u>Средн</u>	функц	остью
400	<u>еквад</u>	ию	распр
студен	<u>ратич</u>	распр	еделе
ТОВ	еское	еделе	ния:
работ	<u>ОТКЛО</u>	ния	$p(x) = \begin{cases} Cx(x) \\ 0, ea \end{cases}$
y	нение.	для Х.	(0,80
успеш	Даны	3)	
НО	закон	Вычи	;
выпол	Ы	слите	1)
нят не	распр	матем	Устан
менее	еделе	атичес	ОВИТС
180	ния	кое	неизв
	двух	ожида	естну

Ю	средн	еделе	нь.
посто	еквад	ние.	Найди
янную	ратич	Прим	те
Си	еское	ерные	матем
постр	ОТКЛО	задачи	атичес
ойте	нение.	для	кое
графи	Основ	решен	ожида
К	ные	ия.	ние и
функц	<u>закон</u>	1)	диспе
ии $p(x)$	<u>PI</u>	Вероя	рсию
	распр	тност	случа
2)	еделе	Ь	йной
Найди	<u>ния</u>	попад	велич
те	случа	ания	ИНЫ
функц	<u>йных</u>	стрелк	X.
ию	<u>велич</u>	ОМ В	2) Bce
распр	<u>ИН.</u>	мише	значе
еделе	1.	НР	кин
ния и	Бином	равна	равно
постр	иальн	2/3.	мерно
ойте	oe	Стрел	распр
ee	распр	КОМ	еделе
графи	еделе	сдела	нной
к.	ние.	но15	случа
3)	2.	выстр	йной
Вычи	Равно	елов.	велич
слите	мерно	Случа	ины
матем	e	йная	лежат
атиче	распр	велич	на
ское	еделе	ина	отрезк
ожида	ние.	X-	e
ние,	3.	число	[2,8].
диспе	Норма	попад	Найди
рсию	льное	аний в	те
И	распр	мише	вероят

ность	слите	<u>выбор</u>	40, 41,
попад	вероят	<u>ке.</u>	38, 39,
ания	ность	1.	42, 42,
случа	попад	Постр	44, 41,
йной	ания	ойте	41, 39,
велич	случа	дискр	40, 41,
ины в	йной	етный	40,
проме	велич	вариа	41, 39,
жуток	ины в	ционн	42, 42,
(3,5).	интер	ый	37, 41,
3)	вал	ряд и	44, 43,
Случа	(30,80	начерт	40, 40,
йная).	ите	41, 42,
велич	Вариа	полиг	43, 38,
ина X	<u>ционн</u>	он для	40, 42,
распр	<u>ый</u>	следу	43, 41,
еделе	ряд.	ющег	41, 42,
на по	<u>Выбо</u>	0	42,
норма	<u>рка.</u>	распр	43, 41,
ЛЬНОМ	<u>Полиг</u>	еделе	40.
у	<u>ОН.</u>	ния 45	Найди
закон	<u>Гисто</u>	пар	те
y c	<u>грамм</u>	мужск	средн
матем	<u>a.</u>	ой	ee
атиче	<u>Оценк</u>	обуви,	выбор
СКИМ	<u>и</u>	прода	очное,
ожида	парам	нных	выбор
нием	<u>етров</u>	магаз	очную
m=40	<u>генера</u>	ИНОМ	диспе
И	<u>льной</u>	задень	рсию
диспе	совок	:	И
рсией	упнос	39, 39,	средн
D=200	ти по	40, 43,	еквад
	<u>ee</u>	41, 42,	ратич
Вычи		41, 38,	еское

ОТКЛО	гистог	<u>итель</u>	
нение.	рамму	ные	3,87
2.	для	интер	5.50
Набл	распр	<u>валы</u>	5,52
юдени	еделе	<u>для</u>	5,42
я за	ния,	парам	4,4
проце	найди	етров	,
НТОМ	те	<u>норма</u>	4,31
жира	средн	<u>льног</u>	5.10
30	ee	<u>o</u>	5,13
коров	арифм	распр	2,45
дали	етиче	<u>еделе</u>	, -
следу	ское,	<u>ния.</u>	5,22
ющие	диспе	<u>Прове</u>	5,73
резуль	рсию	<u>рка</u>	2.24
таты:	И	статис	3,24
3,86	средн	тичес	3,4
3,98 4,16	еквад	<u>ких</u>	7,2
4,02	ратич	<u>гипот</u>	5,17
4,18	еское	<u>e3.</u>	,
Постр	ОТКЛО	В ходе	6,22
ойте	нение.	прове	5.04
по	<u>Оценк</u>	дения	5,24
ЭТИМ	Щ	экспе	5,85
данны	парам	римен	4,1
M	етров	та	4,42
интер	<u>генера</u>	получ	,
вальн	<u>льной</u>	ен	6,52
ый	совок	следу	2.12
вариа	<u>упнос</u>	ющий	2,12
ционн	ти по	набор	5,26
ый	<u>ee</u>	данны	,
	<u>выбор</u>	x :	4,67
ряд, начер	<u>ке.</u>	2,94	5.50
тите	<u>Довер</u>		5,59
INIC			

	3.	соотве	корре
3,28	Вычи	тству	<u>ляция</u> .
1.	слите	ющие	Иссле
Постр	выбор	довер	дуйте
ойте	очные	итель	связь
интер	характ	ной	между
вальн	ерист	вероят	получ
ый	ики	ности	енны
вариа	призн	0,99 и	МИ
ционн	ака:	0,95.	измер
ый	средн	5. C	ениям
ряд и	ee,	надеж	И
гистог	диспе	ность	велич
рамму	рсию	ю 0,99	ин Х
относ	И	прове	и Ү:
итель	средн	рьте	X 4 6
ных	еквад	гипот	8 10
частот	ратич	езу о	12
	еское	равен	Y 5 8
2.	откло	стве:	7 9 14
Сфор	нение.	а) ген.	
мулир	4. Для	средн	<u>Критерии и</u>
уйте	генера	ей	методика оценивания задач
гипот	льной	значе	
езу о	средн	нию	5 баллов
законе	ей и	5,	выставляется
распр	диспе	b) ген.	студенту, если
еделе	рсии	диспе	составлен
ния	постр	рсии	правильный
иссле	ойте	значе	алгоритм
дуемо	довер	нию	решения задачи,
го	итель	1.	в логическом
призн	ные	<u>Линей</u>	рассуждении, в
ака.	интер	ная	выборе формул и
	валы,		решении нет

ошибок, получен	ошибки в выборе	Экзаменационны	непрерыв
верный ответ;	формул и	й билет № 2.	ной функции.
задача решена	методов решения	1. Достаточн	2. Свойства
рациональным	или в	ые условия	дифферен циала.
способом.	математических	экстремум	
4 балла	расчётах; задача	а функции.	Экзаменационны й билет № 5.
выставляется	решена не	2. Линейные	
студенту, если	полностью или в	неоднород ные	1. Связь дифферен
составлен	общем виде.	дифферен	циала с
правильный	2 балла	циальные уравнения	производн ой.
алгоритм	выставляется студенту, если	второго	Дифферен
решения задачи,	задача решена	порядка с постоянн	циал независим
в логическом	неправильно.	ЫМИ	ой
рассуждении и		коэффици ентами.	переменн ой.
решении нет			2. Неопреде
существенных	Примеры	Экзаменационны й билет № 3.	лённый интеграл
ошибок;	экзаменационн ых билетов		и его
правильно	DIN UNICIOD	1. Производ ная, её	основные свойства.
сделан выбор		геометрич	
формул и метода	Экзаменационны	еский и физическ	Экзаменационны й билет № 6.
решения; есть	й билет № 1.	ий смысл.	
объяснение	1. Теорема	2. Предел функции.	1. Основные правила
решения, но	Лагранжа и	Свойства	дифферен
задача решена	следствия	предела функции.	цирования
нерациональным	к ней. 2. Таблица	10	2. Бесконечн
способом или	неопредел	Экзаменационны й билет № 4.	о большие функции
допущено не	ённых интеграло		и их связь
более двух	В.	1. Связь между	с бесконечн
несущественных	Независи мость	непрерыв	о малыми
ошибок.	вида	ностью и дифферен	функциям и.
3 балла	неопредел ённого	цируемост	11.
выставляется	интеграла	ью функции.	Экзаменационны
студенту, если	от выбора аргумента	Случай	й билет № 7.
допущены		недиффер енцируем	1. Производ
существенные		ости	ная

2.	сложной функции. Второй замечател ьный предел.
	енационны плет № 8.
1.	Простейш ие
2.	свойства непрерыв ных функций. Признаки постоянст ва, возрастан ия и убывания функции.
	енационны ілет № 9.

G

- 1. Дифферен циалы высших порядков.
- 2. Однородн ые дифферен циальные уравнения первого порядка.

Экзаменационны й билет № 10.

- 1. Асимптот ы графика функции.
- 2. Дифферен циал функции. Геометрич еский механичес

кий смысл дифферен циала.

Экзаменационны й билет № 11.

- 1. Производ ные высших порядков. Физическ ий смысл производн ой второго порядка.
- 2. Интегрир уемые типы дифферен циальных **уравнений** второго порядка. Дифферен циальные уравнения второго порядка, допускаю шие понижени е порядка.

Экзаменационны й билет № 12.

- 1. Экстрему M функции. Необходи мое условие экстремум
- 2. Первый замечател ьный предел.

Экзаменационны й билет № 13.

- 1. Формула Тейлора ДЛЯ многочлен a
- 2. Бесконечн малые функции ИХ свойства.

Экзаменационны й билет № 14.

- 1. Теорема Ролля.
- 2. Первообр азная и её основное свойство.

Экзаменационны й билет № 15.

- 1. Правило Лопиталя.
- 2. Общие свойства решений линейных дифферен циальных уравнений второго порядка.

Экзаменационны й билет № 16.

- 1. Точки перегиба графика функции.
- 2. Линейные неоднород ные дифферен циальные уравнения

первого порядка. Уравнение Бернулли.

Экзаменационны й билет № 17.

- 1. Линейные однородн ые дифферен циальные уравнения второго порядка с постоянн ЫМИ коэффици ентами.
- Выпуклос ть вогнутост ь графика функции.

Перевод оценки из 100балльной четырехбалльну ю производится следующим образом: отлично – от 80 110 баллов (включая 10 поощрительных баллов); - хорошо – от 60 до 79 баллов;

- удовлетворитель но – от 45 до 59 баллов:
- неудовлетворите льно – менее 45 баллов.

Критерии оценки (в баллах):

- 25-30 баллов выставляется студенту, если студент дал полные, развернутые ответы на все теоретические вопросы билета, продемонстриров ал знание функциональных

ал знание функционально возможностей, терминологии, основных элементов, умение применять теоретические знания при выполнении практических

заданий. Студент без затруднений ответил на все дополнительные вопросы.

Практическая часть работы выполнена

полностью без неточностей и

ошибок; - 17-24

баллов выставляется студенту, если студент раскрыл в основном теоретические вопросы, однако

допущены неточности в определении основных понятий. При

ответе на дополнительные

вопросы допущены небольшие неточности. При выполнении практической части работы допущены несущественные

<u>- 10-16</u>

ошибки;

баллов выставляется студенту, если при ответе на теоретические вопросы студентом допущено несколько существенных ошибок в толковании основных

понятий. Логика и полнота ответа

страдают заметными изъянами. Заметны пробелы в

знании основных

методов.

Теоретические вопросы в целом

изложены

достаточно, но с пропусками материала. Имеются

принципиальные ошибки в логике построения

ответа на вопрос.

Студент не решил задачу или при решении

допущены грубые ошибки;

- 1-10 баллов выставляется студенту, если ответ на

теоретические

вопросы свидетельствует о непонимании и крайне неполном знании основных

понятий и методов.

Обнаруживается отсутствие навыков применения теоретических знаний при выполнении практических заданий. Студент не смог ответить ни на один

дополнительный

вопрос.

		Посещение лекционных		
4.3.	Рейти	занятий	<u> — Рейтинг-план</u>	
	нг-	Посещение практических	дисциплины	
	план	занятий		
	дисцип			
	лины			
Рейтиі	нг-план		Специальность	
	ПЛИНЫ		04.05.01.	
7, -,			«Фундаментальн	
_ <u>«Матема</u>	атика»		ая и прикладная	
			Курс	
			1 .	
Специал	ІЬНОСТЬ		семестр	
04.05.			2	
	ментальн ментальн			
-	кладная			
<u> «жимия»</u>	<u> Кладпал</u>			_
Курс			Виды учебной деятельности	
1			студентов	_
семестр				еренциальное исчислен
1			Текущий контроль	_
<u>+</u>			Выполнение практических заданий	_
			Рубежный контроль	_
			Письменная контрольная работа	_
Виды учебной деятельности		ности	Молуль 2. ««Ин	гегральное исчисление
	студентов		Текущий контроль	
		1. «Матрицы. Определители	. Выстемы ин принычествиный и	
Текущий ко			D. Cararra Stranger	_
	е практических	заданий	Рубежный контроль Письменная контрольная работа	_
Рубежный і			тисьменная контрольная расота	_
письменная	контрольная ра	<u>a001a</u>		
Модуль 2	. «Аналитичес	кая геометрия на плоскости	иВы пропранств енаущементы вектор	— эной алгебры»
Текущий к			конференциях, участие в	
Выполнение	е практических	заданий	олимпиадах, написание статей,	
D. 6			работа со школьниками	_
Рубежный і	контроль контрольная ра	абота	H	
Письменная	г контрольная ра		Посещение лекционных	аллы вычитаются из об
			занятий	
Текущий к	онтрон		Посещение практических	
	е практических	ээпэний	занятий	
рыполнение	с практических	заданий		
Рубежный і				
Письменная	контрольная ра	абота	Экзамен	
•	на научных			
	ях, участие в	TO Y		
	, написание ста кольниками	лси,		
раоота со Ш	кольпиками			
	Пология	мость (болды вышителется и		

геитинг-план дисциплины	геитинг-план дисциплины		
 «Математика»	 «Математика»		
Специальность	Специальность		
<u>04.05.01.</u>	<u>04.05.01.</u>		
<u>«Фундаментальн</u>	<u>«Фундаментальн</u>		
ая и прикладная	ая и прикладная		
<u> «кимих</u>	<u> </u>		
Курс	Курс		
1	1,		
семестр	семестр		
<u>3</u>	<u>4</u>		

Виды учебной деятельности студентов	Виды учебной деятельности
	ное исчисление функции нескольких переменных»»
Текущий контроль	
Выполнение практических заданий	Текущий контроль
Рубежный контроль	Выполнение практических заданий
Письменная контрольная работа	Рубежный контроль
	Письменная контрольная работа
Текущий контроль	Модуль 2. ««Теория вероятностей и мат
Выполнение практических заданий	Текущий контроль
Рубежный контроль	Выполнение практических заданий
Письменная контрольная работа	Рубежный контроль
	Письменная контрольная работа
Выступление на научных	
конференциях, участие в	Выступление на научных
олимпиадах, написание статей,	конференциях, участие в
работа со школьниками	олимпиадах, написание статей,
	работа со школьниками
Посещаемость (баллы вычитают	гся из общей суммы набранных баллов)
Посещение лекционных	Посещаемость (баллы вычитаются из обш
занятий	Посещение лекционных
Посещение практических	занятий
занятий	Посещение практических
	занятий
Demoscory	
Экзамен	Экзамен
	<u> </u>

5. Учебно-	№2 – 4 mt.,	ская	высшей
методическое и	абонемент	статистика,	математике -
информационно	№ 6 – 52	10-е изд.	14-е изд., -
е обеспечение	шт.)	перераб. и	ФИЗМАТЛИ
дисциплины	3.	доп. – М:	Т - 2004 г., -
5.1. Перечень	Данк	Юрайт. –	336 c.
основной и	о П.Е.	2010, 479 c.	(БашГУ,
дополнительной	Высшая	(БашГУ,	абонемент
учебной	математика	абонемент	№2 – 80 шт.,
литературы,	В	No2 - 10	абонемент №
необходимой	упражнения	ШТ.,	3 – 96 шт.,
для освоения	х и задачах.	абонемент	абонемент №
дисциплины	В 2 ч.	№ 3 – 95	8 — 61 шт.,
Основная	Учеб.пособ	<u> </u>	абонемент №
Основная	ие для	шт., читальный	9 – 5 шт.,
литература:	вузов/	зал № 5 – 3	у — у шт., читальный
	п.Е.Данко,	3a.i № 3 – 3 IIIT.)	зал № 2 – 5
1.	А.Г.Попов,	ш1.)	
Гуса	А.т.Попов, Т.Я.Кожевн		шт.) 7.
К	икова 6-е	Ломолима	
А.А.Высша	икова 0-е изд. – М.:	Дополнит	Гмур ман В.Е.
Я	* *	ельная	
математика:	Издательск ий дом	литература:	Руководство к
В 2 т. Т.1.	ий дом «ОНИКС 21	5.	решению
Учеб. Для		у. Шип	задач по
студентов	век»: Мир и Образовани	D F	теории
вузов. – 6-е	е, 2003 304		вероятностии
изд Мн.:		Высшая	математическ
ТетраСисте	с.(ч.1)	математика :	ОЙ
мс, - 2007	(БашГУ,	учебник для	статистике:
544c.	абонемент	вузов— 6-е изд. — М. :	Учеб. пособие для
(БашГУ,	№2 – 5 шт., абонемент		
абонемент		Высшая	студентов
№2 – 2 шт.,	№ 6 – 1 шт., абонемент	школа, 2003 . — 479 с.	вузов 11-е
абонемент			изд., доп. – М.: Юраўт
№ 6 – 53	№ 7 – 178	(БашГУ, абонемент	M.: Юрайт,
шт.)	шт.); 2003		2010 404 c.
2.	416 с.(ч.2)	№2 – 4 шт.,	(БашГУ,
Гуса	(БашГУ,	абонемент №	абонемент
K	абонемент	3 — 186 шт.,	№2 – 6 шт.,
А.А.Высша	№2 – 2 шт.,	абонемент №	абонемент №
Я	абонемент	9 – 14 шт.,	3 — 94 шт.,
математика:	№ 6 – 2 шт.,	читальный	абонемент №
В 2 т. Т.2.	абонемент	зал № 2 – 1	6 – 20 mt.,
Учеб. Для	№ 7 – 179	ШТ.,	читальный
студентов	шт.)	читальный	зал № 5 – 3
вузов. – 6-е	4.	зал № 5 — 1	шт.)
изд Мн.:	Гмур	шт.)	8. Even
ТетраСисте	ман В.Е.	6.	Гуса
мс, - 2007	Теория	Мин	к А.А. Задачи
448c.	вероятносте	орский В.П.	и упражнения
(БашГУ,	й и	Сборник	по высшей
абонемент	математиче	задач по	математике:
domentil			

по дисциплине

В 2 ч. Ч.1.: Для вузов. – 2-е изд., перераб. – Мн.: Выш. шк., 1988. – 247с. (БашГУ, абонемент №2 – 331 шт.)

9. Гуса к А.А. Задачи и упражнения ПО высшей математике: В 2 ч. Ч.2.: Для вузов. -2-е изд., перераб. Мн.: Выш. шк., 1988. – 247с. (БашГУ, абонемент №2 – 248 шт.)

5.2. Перечень ресурсов информационно

телекоммуника ционной сети «Интернет» и программного обеспечения, необходимых для освоения диспиплины

- 1. Элект

 ронная

 библиотечная

 система
 «ЭБ

 БашГУ»

 https://elib.bashed

 u.ru//
- 2. Элект ронная библиотечная система излательства

«Лань» - https://e.lanbook.c

- 3. Элект ронная библиотечная система «Университетска я библиотека онлайн» https://biblioclub.r
- 4. Научн ая электронная библиотека elibrary.ru (доступ к электронным научным журналам) https://elibrary.ru/projects/subscription/rus_titles_open_asp
- 5. Элект ронный каталог Библиотеки БашГУ http://www.bashlib.ru/catalogi/
- 6. Элект ронная библиотека диссертаций РГБ http://diss.rsl.ru/

7. Госуд арственная публичная научнотехническая библиотека России. База данных международных индексов научного цитирования **SCOPUS** http://www.gpntb. ru. 8. Госуд

арственная

публичная научнотехническая библиотека России. База данных международных индексов научного цитирования Web of Science - http://www.gpntb.ru

Програм мное обеспечение:

1. Windows 8 Russian. Windows Professional 8 Russian Upgrade. Договор №104 от 17.06.2013 г. Лицензии бессрочные.

2.
Microsoft Office
Standard 2013
Russian. Договор
№114 от
12.11.2014 г.
Лицензии
бессрочные.

6.
Материальнотехническая база, необходимая для осуществления образовательн ого процесса

Наименование специальных помещений, аудиторий, кабинетов, лабораторий

1

1. Учебная аудитория для проведения занятий лекционного типа: аудитория № 405 (химфак корпус), аудитория № 311

У

П

X

ЭЛ

Sı

Н

ЭП

18

П

E'

 \mathbf{C}

- аудитория № 405 (химфак корпус), аудитория № 311 (химфак корпус), аудитория № 310 (химфак корпус), аудитория № 305 (химфак корпус).

 2.Учебные аудитории для
- проведения занятий семинарского типа аудитория № 405 (химфак корпус). аудитория №311(химфак корпус), аудитория № 310(химфак корпус), аудитория № 305 (химфак корпус), аудитория № 001 (химфак корпус), аудитория № 002 (химфак корпус), аудитория № 006 (химфак корпус), аудитория № 007 (химфак корпус), аудитория № 008 (химфак
- 3. Учебная аудитория для проведения групповых и индивидуальных консультаций

корпус).

аудитория № 405 (химфак корпус), аудитория № 311 (химфак корпус), аудитория № 310 (химфак корпус), аудитория № 305 (химфак корпус).

4. Учебная аудитория для текущего контроля и промежуточной аттестации: аудитория № 405 (химфак корпус), аудитория № 311 (химфак корпус), аудитория № 305 (химфак корпус), аудитория № 004 (химфак корпус), аудитория № 004 (химфак корпус),

корпус), аудитория № 005 (химфак корпус). Помещения для самостоятельной работы: читальный зал № 1 (главный корпус), читальный зал № 2 (физмат корпус-учебное) читальный зал № 5 (гуманитарный корпус), читальный зал № 6 (учебный корпус), читальный зал № 7 (гуманитарный корпус)