МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РОССИЙСКОЙ ФЕДЕРАЦИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНЖЕНЕРНЫЙ ФАКУЛЬТЕТ

Актуализировано: на заседании кафедры ИФиФМ протокол от «30» августа 2017г. №1

Согласовано: Председатель УМК факультета

Зав.кафедрой

/ У.Ш.Шаяхметов

А. А. / Мельникова А.Я.

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

дисциплина Электротехника и электроника

Базовая часть Б1.Б.14

программа академический бакалавриат

Направление подготовки: 15.03.02 "Технологические машины и оборудование"

<u>Направленность (профиль) программы подготовки: "Инжиниринг технологического</u> оборудования"

Квалификация Бакалавр

Разработчик (составитель) Захаров А.В. Доцент, к.ф.-м.н., доцент

· Baxalles · /Baxapos A.B.

Для приема: 2014 г.

Уфа 2017г.

Baxajial

Составитель / составители:

доц., к.ф.-м.н. Захаров А.В.

Рабочая программа дисциплины актуализировано на заседании кафедры протокол от «30» августа 2017 г. N2 1

Заведующии кафедрои		/ <u>У.Ш</u>	<u>1.Шаяхметов</u> ./	
Дополнения и изменения, внесенные в заседании кафедры				утверждены н
, протокол № от «»	20 _ r.			
Заведующий кафедрой			/	Ф.И.О./
Дополнения и изменения, внесенные в заседании кафедры			дисциплины,	утверждены н
, протокол № от «»	20 _ г.			
Заведующий кафедрой			/	Ф.И.О./

Список документов и материалов

- 1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы
- 2. Цель и место дисциплины в структуре образовательной программы
- 3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)
- 4. Фонд оценочных средств по дисциплине
 - 4.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
 - 4.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций
 - 4.3. Рейтинг-план дисциплины (при необходимости)
- 5. Учебно-методическое и информационное обеспечение дисциплины
 - 5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения дисциплины
 - 5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины
- 6. Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения образовательной программы

В результате освоения образовательной программы обучающийся должен овладеть следующими результатами обучения по дисциплине:

Резул	ьтаты обучения	Формируемая компетенция (указание кода)	Примечание
Знания	1. Знать основные законы электрической цепи и фозические законы. Лежащие в основе работы электрического и электронного оборудования, узлов и систем.	ОПК-1; ПК-13; ПК-15	
	2. Знать устройство и принцип работы электроизмерительных приборов и комплексов измерительной аппаратуры	ОПК-1; ПК-13; ПК-15	
Умения	1. Уметь пользоваться измерительными приборами и комплексами на электронной основе.	ОПК-1; ПК-13; ПК-15	
	2. Уметь пользоваться новейшими электро регулирующими и управляющими комплексами на основе обработки информации.	ОПК-1; ПК-13; ПК-15	
Владения (навыки / опыт деятельности)	1. Владеть современными методами теоретических и экспериментальных исследований в области электроизмерительной техники	ОПК-1; ПК-13; ПК-15	
	2. Владеть навыками использования полученных знаний и умений для интерпретации структуры и прогноза свойств материалов	ОПК-1; ПК-13; ПК-15	

2. Цель и место дисциплины в структуре образовательной программы

Дисциплина Б1.Б.14 «Электротехника и электроника» относится к базовой части. Дисциплина изучается на 4 курсе в 7, 8 семестрах для заочной формы обучения по Направление подготовки: 15.03.02 "Технологические машины и оборудование" Направленность (профиль) программы подготовки: "Инжиниринг технологического оборудования".

Целями освоения дисциплины «Электротехника и электроника» являются:

Подготовка студента для выполнения научно исследовательского вида деятельности на основе сформированных компетенций ОПК -1, ПК -13, ПК -15.

- получение систематизированного представления о закономерностях в электрических сетяъ, устройствах и оборудовании;
 - знание методов расчета электрических цепей во всех режимах работы;
 - знание основных устройств в электротехнике и электронике;
- овладение навыками расчетов работы комплексной электроустановки и электропривода.

Задачей дисциплины является формирование знаний, умений и навыков по следующим направлениям: владеть основными понятиями и категориями Электротехники и электроники, навыками использования полученных знаний и умений для интерпретации работы электрических цепей и оборудования.

Для освоения дисциплины необходимы компетенции, сформированные в рамках изучения следующих дисциплин: «Математика», «Физика»

3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

Содержание рабочей программы представлено в Приложении № 1.

4. Фонд оценочных средств по дисциплине

- 4.1. Перечень компетенций с указанием этапов их формирования в процессе освоения образовательной программы. Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания
- 4.1.1. Оценка сформированности компетенций на потоке очной формы обучения по результатам экзамена. (для очной и заочной формы обучения).

Код и формулировка компетенции ОПК- 1 способностью к приобретению с большой степенью самостоятельности новых знаний с использованием современных образовательных и информационных технологий

Код и формулировка компетенции ПК- 13 умением проверять техническое состояние и остаточный ресурс технологического оборудования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования

Код и формулировка компетенции ПК- 15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин

4.1.1. Оценка сформированности компетенций на потоке очной формы обучения по результатам зачета (для очной и заочной формы обучения).

Код и формулировка компетенции ОПК- 1 способностью к приобретению с большой степенью самостоятельности новых знаний с использованием современных образовательных и информационных технологий

	T	T	T -
Этап	Планируемые	«Незачет»	«Зачет»
(уровень)	результаты обучения		
освоения	(показатели достижения		
компетенции	заданного уровня		
	освоения компетенций		
Первый этап	Знать:		
(уровень)	1. Знать основные	Студент знает не	Студент знает
	законы электрической	уверенно основные	основные законы
	цепи и фозические	законы электрической	электрической цепи и
	законы, лежащие в	цепи и фозические	фозические законы,
	основе работы	законы, лежащие в	лежащие в основе
	электрического и	основе работы	работы
	электронного	электрического и	электрического и
	оборудования, узлов и	электронного	электронного
	систем.основные	оборудования, узлов и	оборудования, узлов и
	законы электрической	систем.	систем. может ими
	цепи и фозические		пользоваться
	законы, лежащие в		системно.
	основе работы		
	-		
	электрического и		
	электронного		
	оборудования, узлов и		
	систем.	~	~
	2. Знать устройство и	Студент знает не	Студент знает
	принцип работы	уверенно устройство и	устройство и принцип
	электроизмерительных	принцип работы	работы
	приборов и	электроизмерительных	электроизмерительных
	комплексов	приборов и комплексов	приборов и
	измерительной		комплексов
	аппаратуры	измерительной аппаратуры	измерительной аппаратуры. Может
		аппаратуры	анализировать
			возможности того или
			иного класса
			измерительной или
			контрольной
			аппаратуры .
Второй этап	1. Уметь пользоваться	Студент не уверенно	Студент уверенно
(уровень)	измерительными	умеет пользоваться	умеет пользоваться
	приборами и	измерительными	измерительными
	комплексами на	приборами и	приборами и
	электронной основе.	комплексами на	комплексами на
	satury simion sensue.	электронной основе.	электронной основе и
			может регулировать
			настройки приборов.
	2.Уметь пользоваться	Студент не уверенно	Студент умеет
	новейшими электро	умеет пользоваться	пользоваться
	регулирующими и	новейшими электро	новейшими электро
	управляющими	регулирующими и	регулирующими и
	комплексами на основе	управляющими	управляющими
	обработки информации	комплексами на	комплексами на

	T		
		основе обработки	основе обработки
		информации	информации. Может
			контролировать и
			обучать работе
			приборов других
			студентов
Третий этап	1. Владеть	1. Владеть	1. Владеть
(уровень)	современными	современными	современными
	методами	методами	методами
	теоретических и	теоретических и	теоретических и
	экспериментальных	экспериментальных	экспериментальных
	исследований в области	исследований в	исследований в
	электроизмерительной	области	области
	техники	электроизмерительной	электроизмерительной
		техники	техники
	2. Владеть	Студент не может	Студент может
	навыками	уверенно владеть	уверенно владеть
	использования	навыками	навыками
	полученных знаний и	использования	использования
	умений для	полученных знаний и	полученных знаний и
	интерпретации	умений для	умений для
	структуры и прогноза	интерпретации	интерпретации
	свойств материалов	структуры и прогноза	структуры и прогноза
		свойств материалов	свойств материалов

Код и формулировка компетенции ПК- 13 умением проверять техническое состояние и остаточный ресурс технологического оборудования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования

Этап (уровень) освоения компетенции Первый этап (уровень)	Планируемые результаты обучения (показатели достижения заданного уровня освоения компетенций Знать: 1. Знать основные законы электрической цепи и фозические законы, лежащие в основе работы электрического и электронного оборудования, узлов и систем. основные законы электрической цепи и фозические законы, лежащие в основе работы электрического и электрического и электрического и электрического и электронного	«Незачет» Студент знает не уверенно основные законы электрической цепи и фозические законы, лежащие в основе работы электрического и электронного оборудования, узлов и систем.	«Зачет» Студент знает основные законы электрической цепи и фозические законы, лежащие в основе работы электрического и электронного оборудования, узлов и систем. может ими пользоваться системно.
	электронного оборудования, узлов и систем.		
	2. Знать устройство и принцип работы электроизмерительных приборов и комплексов измерительной аппаратуры	Студент знает не уверенно устройство и принцип работы электроизмерительных приборов и комплексов измерительной аппаратуры	Студент знает устройство и принцип работы электроизмерительных приборов и комплексов измерительной аппаратуры. Может

		T	
			анализировать
			возможности того или
			иного класса
			измерительной или
			контрольной
			аппаратуры .
Второй этап	1. Уметь пользоваться	Студент не уверенно	Студент уверенно
(уровень)	измерительными	умеет пользоваться	умеет пользоваться
	приборами и	измерительными	измерительными
	комплексами на	приборами и	приборами и
	электронной основе.	комплексами на	комплексами на
	электронной основе.	электронной основе.	электронной основе и
		-	может регулировать
			настройки приборов.
	2. Уметь пользоваться	Студент не уверенно	Студент умеет
	новейшими электро	умеет пользоваться	пользоваться
	регулирующими и	новейшими электро	новейшими электро
	управляющими	регулирующими и	регулирующими и
	комплексами на основе	управляющими	управляющими
	обработки информации	комплексами на	комплексами на
		основе обработки	основе обработки
		информации	информации. Может
			контролировать и
			обучать работе
			приборов других
			студентов
Третий этап	1. Владеть	1. Владеть	1. Владеть
(уровень)	современными	современными	современными
(JP * D * III)	методами	методами	методами
	теоретических и	теоретических и	теоретических и
	экспериментальных	экспериментальных	экспериментальных
	исследований в области	исследований в	исследований в
	электроизмерительной	области	области
	техники	электроизмерительной	электроизмерительной
	Техники	техники	техники
	2. Влалеть		
		Студент не может	Студент может
	навыками	уверенно владеть	уверенно владеть
	использования	навыками	навыками
	полученных знаний и	использования	использования
	умений для	полученных знаний и	полученных знаний и
	интерпретации	умений для	умений для
	структуры и прогноза	интерпретации	интерпретации
	свойств материалов	структуры и прогноза	структуры и прогноза
		свойств материалов	свойств материалов

Код и формулировка компетенции ПК- 15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин

Этап	Планируемые	«Незачет»	«Зачет»
(уровень)	результаты обучения		
освоения	(показатели достижения		
компетенции	заданного уровня		
	освоения компетенций		
Первый этап	Знать:		
(уровень)	1. Знать основные	Студент знает не	Студент знает
	законы электрической	уверенно основные	основные законы
	цепи и фозические	законы электрической	электрической цепи и
	•	цепи и фозические	фозические законы,

	законы, лежащие в основе работы электрического и электронного оборудования, узлов и систем.основные законы электрической цепи и фозические законы, лежащие в основе работы электрического и электронного оборудования, узлов и систем.	законы, лежащие в основе работы электрического и электронного оборудования, узлов и систем.	лежащие в основе работы электрического и электронного оборудования, узлов и систем. может ими пользоваться системно.
	2. Знать устройство и принцип работы электроизмерительных приборов и комплексов измерительной аппаратуры	Студент знает не уверенно устройство и принцип работы электроизмерительных приборов и комплексов измерительной аппаратуры	Студент знает устройство и принцип работы электроизмерительных приборов и комплексов измерительной аппаратуры. Может анализировать возможности того или иного класса измерительной или контрольной аппаратуры.
Второй этап (уровень)	1. Уметь пользоваться измерительными приборами и комплексами на электронной основе.	Студент не уверенно умеет пользоваться измерительными приборами и комплексами на электронной основе.	Студент уверенно умеет пользоваться измерительными приборами и комплексами на электронной основе и может регулировать настройки приборов.
	2. Уметь пользоваться новейшими электро регулирующими и управляющими комплексами на основе обработки информации	Студент не уверенно умеет пользоваться новейшими электро регулирующими и управляющими комплексами на основе обработки информации	Студент умеет пользоваться новейшими электро регулирующими и управляющими комплексами на основе обработки информации. Может контролировать и обучать работе приборов других студентов
Третий этап (уровень)	1. Владеть современными методами теоретических и экспериментальных исследований в области электроизмерительной техники	1. Владеть современными методами теоретических и экспериментальных исследований в области электроизмерительной техники	1. Владеть современными методами теоретических и экспериментальных исследований в области электроизмерительной техники
	2. Владеть навыками использования полученных знаний и	Студент не может уверенно владеть навыками использования	Студент может уверенно владеть навыками использования

	умений для	полученных знаний и	полученных знаний и
И	интерпретации	умений для	умений для
	структуры и прогноза	интерпретации	интерпретации
c	свойств материалов	структуры и прогноза	структуры и прогноза
		свойств материалов	свойств материалов

Критериями оценивания являются баллы, которые выставляются преподавателем за виды деятельности (оценочные средства) по итогам изучения модулей (разделов дисциплины), перечисленных в рейтинг-плане дисциплины (для экзамена: текущий контроль — максимум 40 баллов; рубежный контроль — максимум 30 баллов, поощрительные баллы — максимум 10; для зачета: текущий контроль — максимум 50 баллов; рубежный контроль — максимум 50 баллов, поощрительные баллы — максимум 10).

Шкалы оценивания:

(для экзамена:

от 45 до 59 баллов – «удовлетворительно»;

от 60 до 79 баллов – «хорошо»;

от 80 баллов – «отлично».

для зачета:

зачтено — от 60 до 110 рейтинговых баллов (включая 10 поощрительных баллов), не зачтено — от 0 до 59 рейтинговых баллов).

4.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения образовательной программы. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций

Для заочной формы обучения

Этапы	Результаты обучения	Компетенция	Оценочные
освоения		·	средства
1-й этап Знания	1. Знать основные законы электрической цепи и фозические законы, лежащие в основе работы электрического и электронного оборудования, узлов и систем. основные законы электрической цепи и фозические законы, лежащие в основе работы электрического и электронного оборудования, узлов и систем.	ПК- 13 умением проверять техническое состояние и остаточный ресурс технологического оборудования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования;ПК-15 умением выбирать основные и вспомогательные материалы, способы реализации технологических	Отчеты по лабораторным работам. Контроль полноты усвоения лекционного материала в рамках КСРС. Решение практических задач. Расчетно графическая контрольная работа Тесты. Зачет

		процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин	
	2. Знать устройство и принцип работы электроизмерительных приборов и комплексов измерительной аппаратуры	ПК- 13 умением проверять техническое состояние и остаточный ресурс технологического оборудования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования;ПК-15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин	Отчеты по лабораторным работам. Контроль полноты усвоения лекционного материала в рамках КСРС. Решение практических задач. Расчетно графическая контрольная работа Тесты. Зачет
2-й этап Умения	1. Уметь пользоваться измерительными приборами и комплексами на электронной основе.	ПК- 13 умением проверять техническое состояние и остаточный ресурс технологического оборудования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования; ПК-	Отчеты по лабораторным работам

		15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин	
	2. Уметь пользоваться новейшими электро регулирующими и управляющими комплексами на основе обработки информации	ПК- 13 умением проверять техническое состояние и остаточный ресурс технологического оборудования, организовывать профилактический осмотр и текущий ремонт технологических машин и оборудования; ПК-15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин	Отчеты по лабораторным работам
3-й этап Владеть навыками	1. Владеть современными методами теоретических и экспериментальных исследований в области электроизмерительной техники	ОПК-1; ПК- 15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять	Зачет. Экзамен. Отчеты по лабораторным работам. Решение практических задач.

	прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин	
2. Владеть навыками использования полученных знаний и умений для интерпретации структуры и прогноза работы электрооборудования	ПК- 15 умением выбирать основные и вспомогательные материалы, способы реализации технологических процессов, применять прогрессивные методы эксплуатации технологического оборудования при изготовлении технологических машин	Зачет. Экзамен. Отчеты по лабораторным работам. Решение практических задач.

4.3. Рейтинг-план дисциплины (при необходимости)

Вопросы для подготовки к зачету:

- 1. Законы Кирхгофа для разветвленной электрической цепи в стационарном режиме.
- 2. Способы регулировки оборотов коллекторного двигателя.
- 3. Найти эквивалентное сопротивление параллельной цепочке сопротивлений $z_1=i~20~\Omega,\,z_2=20~\Omega,\,z_3=-i~20~\Omega$.
- 4. Найти все мощности нагрузок и полную мощность, если нагрузки $z_1=i\ 20\ \Omega,\ z_2=20\ \Omega,\ z_3=-i\ 20\ \Omega$ подключены параллельно к источнику синусоидального напряжения ${\rm E}=50\ {\rm B}.$
- 5. Какие будут обороты ассинхронного двигателя с 6 полюсами при сольжении s= 0. 04?
- 6. 1.Трехфазный выпрямитель с общим нулем.
- 7. Инвертор на микросхеме "Или-не".
- 8. . Найти эквивалентное сопротивление последовательной цепочке сопротивлений $z_1=i~20~\Omega,\,z_2=20~\Omega,\,z_3=-i~20~\Omega$.

- 9. Нагрузочная характеристика двигателя постоянного тока $M = 500~(~1-.2~10^{(-3)}~\omega~)$, HM . Каковы обороты вала в оборотах в минуту при тормозном моменте в 300 Hm?
- 10. Конденсатор последовательно с резистором подключены к источнику синусоидального напряжения в 50 В и частоты 50 Гц. Какова должна быть емкость конденсатора, если сопротивление резистора 40 Ом и ток в цепи 1Ампер?
- 11. Законы Кирхгофа для разветвленной электрической цепи в квазистационарном режиме.
- 12. Принцип Э.Х.Ленца и работа трансформатора тока.
- 13. Найти эквивалентное сопротивление звезды сопротивлений $z_1=i\ 20\ \Omega,\ z_2=20\ \Omega,\ z_3=-i\ 20\ \Omega$., соединенных в треугольник.
- 14. Сколько разрядов имеет адресная шина дешифратора на 64 выхода?
- 15. Вольтамперная характеристика лампы задается формулой $u = 50 \sqrt{1 + I.2}$. Найти динамическое и статическое сопротивление лампы при токе в 40 A.
- 16. Объяснение принципа Араго на основе закона Фарадея.
- 17. Термоток катода. Принцип работы трехэлектродной лампы.
- 18. В последовательной резонансной цепи ЭДС =50 В, напряжение на резисторе U=30 В, напряжение на конденсаторе 500 В. Чему равно напряжение на катушке индуктивности, если характер нагрузки активно индуктивный?
- 19. Найти мощность на валу, если полная мощность двигателя составляет 5 КВт, косинус равен 0.75, КПД = 90%.
- 20. Плавкий предохрантель срабатывает при токе в 10 А. При каком токе он будет срабатывать, если диаметр провода из этого же материала увеличить в 2 раза?
- 21. Метод узловых потенциалов.
- 22. Реакция якоря двигателя постоянного тока.
- 23. Образ Лапласа переменного тока $F(p) = \frac{p}{p^2 + \omega^2}$, Найти ток.
- 24. В последовательной резонансной цепи ЭДС =50 В, напряжение на резисторе U=30 В, напряжение на конденсаторе 500 В. Чему равно напряжение на катушке индуктивности, если характер нагрузки активно емкостной?
- 25. Сопротивление линии $r_i = 2 \Omega$. Какова максимальная мощность на нагрузке при ЭДС на вторичной обмотке трансформатора 220 В?
- 26. Метод контурных токов.
- 27. Автотрансформатор.
- 28. Образ Лапласа переменного тока $F(p) = \frac{\omega}{p^2 + \omega^2}$, Найти ток.
- 29. Сколько витков имеет первичная обмотка трансформатора на 220 В, если во вторичной обмотке на 15 В 10 витков?
- 30. Как изменится работа трансформатора тока, если в тор катушек трансформатора вставить ферромагнитный непроводящий сердечник?
- 31. Диодный вентиль.
- 32. Метод комплексных сопротивлений как операционный метод.
- 33. Найти тактовое время тактового генератора, если разрядное сопротивление 10 КОм и емкость $12 \text{ п}\Phi$.
- 34. Через четырехполюсник с передаточным числом K=5 ${f e}^{\left(rac{I\,\pi}{4}
 ight)}$ прошел сигнал, который на входе был $u=2\,\sin\!\left(\varpi\,\,t+rac{\pi}{6}
 ight)$. Какой сигнал будет на выходе?
- 35. Предложить электронную схему периодического счетчика с периудом 7.

- 36. Характер нагруженного трансформатора.
- 37. Трехфазные цепи. Соединение нагрузки треугольником.
- 38. Как из двух инверторов сделать усилитель?
- 39. Измерительный прибор K-50 показал фазное напряжение 220 В, линейный ток 0. 59 А, мощность нагрузки 120 Вт. Какова реактивная мощность нагрузки?
- 40. Найти скольжение, если ассинхронный двигатель совершает 1400 об/ мин.
- 41. Нагрузочная характеристика ассинхронного двигателя.
- 42. Мостовой выпрямитель.
- 43. Сложить два синусоидальных тока $i_1 = 3 \sin \left(314 \ t \frac{\pi}{6} \right)$ и $i_2 = 4 \sin \left(314 \ t + \frac{\pi}{3} \right)$ пользуясь векторным методом.
- 44. Напряжение на лампе определяется Вольт Амперной характеристикой $u=2\ I^2$. Какова мощность лампы при токе 5 А?
- 45. Мощность трансформатора в холостом ходе 12 Вт, а при испытании в режиме короткого замыкания и низкого первичного напряжения $p_{kz}=18~$ Вт. Найти КПД нагруженного трансформатора, на который подается мощность 150 Вт .
- 46. Трехфазные цепи. Соединение нагрузки звездой без нулевого провода.
- 47. Схема усилителя с общим эмиттером.
- 48. Сопротивления по 400 Ом включены в трехфазную цепь звездой, а затем треугольником. Во сколько раз изменится мощность нагрузок?
- 49. Дать оценку коэффициенту пульсаций сигналу с выхода однополупериодного однофазного выпрямителя.
- 50. Какой угол между магнитными полями ротора и статора синхронного двигателя, если вращательный момент на валу составляет половину от максимального.
- 51. Трехфазный выпрямитель с общим нулем.
- 52. Векторная диаграма нагруженного трансформатора.
- 53. Коэффициент усиления K=100. Коэффициент обратной связи $\beta=.99$. Чему равен коэффициент усиления усилителя с обратной связью?
- 54. Напряжение на конденсаторе при токе 10 А составило 200 В. Чему равна реактивная мощность на конденсаторе и средняя мощность?
- 55. Какой ротор ассинхронного двигателя может плавно менять угловую скорость.
- 56. Ассинхронный двигатель с линейным ротором.
- 57. Мультивибратор.
- 58. Во сколько раз увеличится мощность, если три лампочки, соединенные последовательно, соединить параллельно?
- 59. Во сколько раз можно увеличить мощность сварочной дуги, если увеличить сечение проводов вторичной обмотки трансформатора в два раза?
- 60. Какой характер будеи иметь нагрузка, если в цепь синхронного двигателя последовательно подключить катушки индуктивности?
- 61. Прямое и обратное преобразования Лапласа...
- 62. Дроссель нелинейный элемент электрической цепи.
- 63. Как изменится магнитный поток и ток в первичной обмотке, если сечение магнитопровода трансформатора уменьшить в два раза?
- 64. Какой характер нагруженного синхронного двигателя, если угол между магнитными полями ротора и статора составляет $\frac{\pi}{3}$.
- 65. Два источника ЭДС E_1 = 10 B, E_2 = 8 В имеют одинаковые внутренние сопротивления r = 1.2 Ω . Какой будет потенциал в точках соединения их навстречу друг другу?
- 66. Образ Лапласа производной функции и интеграла от функции.

- 67. Конденсаторный способ получения вращающегося магнитного поля статора ассинхронного двигателя.
- 68. Сглаживающий коэффициент фильтра равен 0. 02. Какое напряжение поступит на нагрузку после фильтрации напряжения, выпрямленного мостовым выпрямителем, если на выпрямитель поступает напряжение 50 В с частотой 50 Гц.?
- 69. Чему равна индуктивность катушки, если полный резонанс наступил при последовательном соединении катушки с конденсатором емкости 16 мкФ на чатоте 200 Гп?
- 70. Трехфазный нагревательный элемент подключен треугольником. Во сколько раз изменится мощность тента при обрыве одной линии?
- 71. Лемма Жордана и обратные преобразования Лаплласа в операционном методе.
- 72. Формула трансформатора напряжения.
- 73. Записать ток $i(t) = \sqrt{2} \, 5 \, \sin \left(314 \, t \frac{\pi}{4} \right)$ в комплексном виде.
- 74. Амперметр на 2 Ампера имеет класс точности 4. С какой погрешностью мы отсчитываем показания 1.5 А?
- 75. На АЛУ поступили два четырех разрядных слова: A(0,1,0,1) и B(0,0,1,1). На выходе логического блока «Или=He» получим?
- 76. КПД силового трансформатора.
- 77. Резонанс напряжений.
- 78. Какой выпрямитель используется, если на период укладывается три максимума?
- 79. Найти скольжение вала двигателя, делающего 800 оборотов в минуту.
- 80. Напряжение на резисторе последовательной R-L-C цепочки равно "ЭДС". В каком отношении находятся напряжения на катушке и на конденсаторе?
- 81. Назачение пусковой обмотки статора ассинхронного двигателя.
- 82. Схема линейного усилителя с обратной связью.
- 83. При скольжении s = 0.05 полная мощность двигателя составляет 4КВт, а КПД=95%. Какова мощность на валу и крутящий момент?
- 84. При частоте f=50 Гц сопротивление конденсатора равно 400 Ом, а катушки 200 Ом. При какой частоте наступит полный резонанс?
- 85. Записать образ Лапласа импульса величиной 5 В и длительностью 0.01 с.
- 86. Назначение пусковой обмотки ротора асинхронного двигателя.
- 87. Управление двигателем постоянного тока.
- 88. З.Какой фильтр необходимо применить для точных измерений осциллографом, если его входное сопротивление 10 КОм и ток 0.2 А.
- 89. Как изменяет работу усилителя паразитная емкость, выполняющая роль слабой отрицательной обратной связи.
- 90. КПД линии 70%, а КПД трансформаторов 500\220 и 220/500 составляет 90%. Как изменится КПД линии, если применить повышающий и понижающий трансформаторы?
- 91. Физические основы работы полупроводникоых транзисторов.
- 92. Применение операционного метода для расчета линейных электрических цепей в импульсном и переходных режимах.
- 93. Как меняется электрическое сопротивлене керамического изолятора при высоких температурах?
- 94. 4. Какова циклическая частота тока в обмотках ротора асинхронного двигателя, если ротор дает 2880 оборотов в минуту?
- 95. Какова емкость синхронного двигателя, если при его включении в сеть 220 В на холостом ходу ток в обмотках статора составляет 50 А?
- 96. Работа R-C фильтра.
- 97. Состав и функции электрической цепи.

- 98. Гальванометр магнито -электрической системы максимально отклоняется при напряжении 0.18 В и токе 0.2 А. Каково должно быть сопротивление шунта амперметра, чтобы при максимальном отклонении проходящий по амперметру ток был равен 2 А?
- 99. 4.Измерительный комплекс К-50 дал показания : u=220B, I= 0. 75 A, P=12 Вт. Найти активное сопротивление катушки.
- 100. Сколько полюсов имеет статор асинхронного двигателя, если вал дает 800 оборотов в минуту?
- 101. Подключение трехфазного асинхронного двигателя в однофазную цепь.
- 102. Трансформатор тока.
- 103. Какое электротехническое устройство необходимо применить для работы электросталеплавильной печи, чтобы сталь плавилась, а медные провода нет?
- 104. Какой добротностью должен обладать колебательный контур при измерениях резонансным методом с большой точностью?
- 105. 5.Гальванометр магнито -электрической системы максимально отклоняется при напряжении 1.8 В и токе 0.2 А. Каково должно быть сопротивление вольтметра, чтобы при максимальном отклонении напряжение на зажимах вольтметра равнялось 10 В?
- 106. Асинхронный двигатель с окольцовкой.
- 107. Блок питания.
- 108. Магнитное сопротивление дросселя с 600 витков в обмотках составляет 1200 Ом. Найти индуктивность дросселя в Генри.
- 109. Трехфазный трансформатор подключили в промышленную трехфазную сеть. На нагрузке, соединенной звездой, напряжение 12 В. Какие еще напряжения можно получить, меняя способ подключения со звезды на треугольник как нагрузки, так и обмоток трансформатора?
- 110. Где применяют резонанс токов?
- 111. Риверсивный переключатель трехфазного ассинхронного двигателя.
- 112. Асинхронный двигатель с фазным ротором.
- 113. Импульсный сигнал в форме прямоугольных импульсов величиной 5 В с чередованием знака имет длительность 0.02 с., и период 0.05 с.
- 114. Чему равно действующее значение напряжения?
- 115. Вольт -амперная характеристика прибора описывается формулой $U = 5\sqrt{2+I}$. чему равно его динамическое сопротивление при токе в 2 A?
- 116. Комплексный ток $J = 2 + i \cdot 1.5$. Написать синусоиду тока при частоте 50 Гц.
- 117. 1.Особенности КМОП технологии микросхем.
- 118. 2. Методы проверки правильности расчетов электрических цепей.
- 119. 3. Вольт -Ампрная харакеристика задается в виде $U = 5\sqrt{2} + J$. Какова мощность, идущая на нагрев, при силе тока в 14 А?
- 120. Когда больше выделяется тепла: при последовательном соединении нагревательных элементов или при параллельном?
- 121. Когда КПД двигателя электропоезда выше: в момент разгона, или при крейсерской скорости?

Перевод оценки из 100-балльной в пятибалльную производится следующим образом:

- отлично от 80 до 110 баллов (включая 10 поощрительных баллов);
- хорошо от 60 до 79 баллов;
- удовлетворительно от 45 до 59 баллов;
- неудовлетворительно менее 45 баллов.

4.3.2. Лабораторные работы

Для очной формы обучения предусмотрены следующие лабораторные работы в 5 семестре:

- 1. Исследование нагрузочных характеристик (ВАХ) и частотных характеристик различных по характеру нагрузок при прохождении синусоидального тока.
- 2. Экспериментальная проверка законов Кирхгофа на сочетаниях различных по характеру нагрузок;
- 3. Методы расчета разветвленной электрической цепи в стационарном и квазистационарном режимах на примере мостовой схемы.
- 4. Исследование трехфазной линии в случае соединения нагрузки звездой и расчеты линии на основе экспериментальных данных.
- 5. Исследование трехфазной линии в случае соединения нагрузки треугольником и расчеты линии на основе экспериментальных данных.
- 6. Расчет и исследование R-L и L-C фильтров.
- 7. Расчет переходных процессов при коммутации.

Для очной формы обучения предусмотрены следующие лабораторные работы в 6 семестре:

- 1. Исследование силовых трансформаторов;
- 2. Исследование двигателей и генераторов постоянного тока;
- 3. Исследование асинхронных двигателей и электропривода на их основе;
- 4. Исследование счетчика электрической энергии;
- 5. Исследование элементов полупроводниковой техники;
- 6. Исследование выпрямителей, аналоговых и импульсных усилителей;
- 7. Узлы и устройства электронной техники.

Для заочной формы обучения предусмотрены следующие лабораторные работы в 5 семестре (зимняя сессия):

- 1. Экспериментальная проверка законов Кирхгофа на сочетаниях различных по характеру нагрузок;
- 2.Методы расчета разветвленной электрической цепи в стационарном и квазистационарном режимах на примере мостовой схемы.
- 3. Исследование трехфазной линии в случае соединения нагрузки звездой и расчеты линии на основе экспериментальных данных.
- 4. Исследование трехфазной линии в случае соединения нагрузки треугольником и расчеты линии на основе экспериментальных данных.
- 5. Расчет и исследование резонанса напряжений и резонанса тока.
- 6. Расчет переходных процессов при коммутации.

Для заочной формы обучения предусмотрены следующие лабораторные работы в 6 семестре:

- 7. Исследование силовых трансформаторов;
- 8. Исследование двигателей и генераторов постоянного тока;
- 9. Исследование асинхронных двигателей и электропривода на их основе;
- 10. Исследование счетчика электрической энергии;
- 11. Исследование элементов полупроводниковой техники;
- 12. Исследование выпрямителей, аналоговых и импульсных усилителей;

Описание лабораторных работ с краткой теорией и заданиями к работе находятся в лаборатории Электротехники и электроники кабинет -02. Методические пособия

подготовлены применительно к лабораторным стендам производства ЧелГУ авторским коллективом ЧелГУ.

Критерии оценки лабораторных работ.

Лабораторные работы оцениваются в баллах в зависимости от сложности работы и количества зачетных заданий предложенных в той или иной лабораторной работе. Раьоты подобраны так. Что в каждой лабораторной работе содержится 6 заданий, оцениваемых в 1 балл. Так за одну работу можно получить 6 баллов на очном отделении и в одной лабораторной работе предусмотрено 8 заданий и максимальный балл 8 для заочной формы обучения.

4.3.3. Задачи, решаемые на практических занятиях и в качестве контрольных рпбот: Задачи размещены:

1. в методическом пособии, подготовленном на кафедре Электротехники УГАТУ Э45 Электротехника и электроника. Электрические и магнитные

цепи: Учебное пособие /Уфимск. госуд. авиац. техн. ун-т; Р. В. Ахма-

деев, И. В. Вавилова, П. А. Грахов, Т. М. Крымская /Под ред. Т. М.

Крымской. – Уфа, 2009. – 147 с.

ISBN 978-5-86911-947-6

Многовариантные задачи для студентов заочной формы обучения предложены в методическом пособии , размещенном в компьютерах лаборатории Электротехники и электроники (кабинет №02.)

Критерии оценки.

За каждую правильно решенную задачу студент дневного отделения получает по 2 балла. Всего студент может набрать 20 баллов.

Студенты заочного отделения получают по две расчетные задачи. Каждая оценивается в 10 баллов. Всего за решение задач студент заочного отделения может получить 20 баллов, которые учитываются при итоговой оценке за дисциплину.

Примерные тесты:

Тесты пишутся письменно в форме ответов на тестовые билеты. Студентам раздвются по одному из 25 вариантов тестовых билетов, каждый из которых содержит по 20 вопросов.

Пример тестового билета:

Билет для тестирования №1

Часть 1

1. Определить сопротивление ламп накаливания при указанных на них мощностях P_1 = 100 $B_{T,2}$ P_2 = 150 $B_{T,2}$ P_3 напряжении U_4 = 220 B_5 .

1.
$$R_1 = 484 \text{ OM}$$
; $R = 124$
Om. 2. $R_1 = 684 \text{ OM}$; $R = 324 \text{ OM}$. 3. $R_1 = 484 \text{ OM}$; $R = 324 \text{ OM}$.

2. Чему равен угол сдвига фаз между напряжением и током в емкостном

элементе? 1. 0.

2.

90°.

3. -

90°.

3. Чему равен ток в нулевом проводе в симметричной трехфазной цепи при соединении нагрузки в

звезду? 1. Номинальному току одной фазы.

2. Нулю.

10

- 3) абсолютно жесткая.
- 11. Какое сопротивление должны иметь: а) амперметр; б)

вольтметр 1. а) малое; б) большое;

2. а) большое; б)

малое; 3. оба

большое;

- 4. оба малое.
- 12. Опасен ли для человека источник электрической энергии, напряжением 36
 - В? 1. Опасен.
 - 2. Не опасен.
 - 3. Опасен при некоторых условиях.
- 13. Какие диоды применяют для выпрямления переменного

тока? 1. Плоскостные.

2.

Точечные.

3. Те и

другие.

14. Из каких элементов можно составить

сглаживающие фильтры? 1. Из резисторов.

- Из диодов.
- 3. Из конденсаторов, индуктивных катушек, транзисторов, резисторов.

Часть 2

- 1. Ток в цепи с идеализированной катушкой изменяется по закону $i = I \sin(\alpha t 90^\circ)$. По какому закону изменяется напряжение в цепи?
- 2. Объясните назначение нейтрального провода в трехфазной электрической цепи синусоидального тока. 3. Измерительный трансформатор тока имеет обмотки с числом виткв $w_1 = 2$ и $w_2 = 100$. Определить его коэффициент трансформации.
- 4. Изобразите механическую характеристику асинхронного двигателя с фазным ротором.
- 5. В каких случаях в схемах выпрямителей используется параллельное включение диодов? 6. Дайте определение избирательного усилителя.

Критерий оценки:

За каждый правильный ответ студент получает один балл. Всего студент может получить максимально 20 баллов. Баллы учитываются при выставлении итоговой оценки по дисциплине.

5. Учебно-методическое и информационное обеспечение дисциплины

5.1. Перечень основной и дополнительной учебной литературы, необходимой для освоения лисциплины

Основная литература:

- 1. Бабичев, Ю.Е. Электротехника и электроника : учебник : в 2-х т. / Ю.Е. Бабичев. Москва : Мир горной книги, 2007. Т. 1. Электрические, электронные и магнитные цепи. 599 с. (Горная электромеханика). ISBN 978-5-91003-015-6 ; То же [Электронный ресурс]. -
 - URL: http://biblioclub.ru/index.php?page=book&id=79262 (04.02.2019).
- 2. Земляков, В.Л. Электротехника и электроника : учебник / В.Л. Земляков ; Федеральное агентство по образованию Российской Федерации, Федеральное государственное образовательное учреждение высшего профессионального образования "Южный федеральный университет", Факультет высоких технологий. Ростов-на-Дону : Издательство Южного федерального университета, 2008. 304 с. Библиогр. в кн. ISBN 978-5-9275-0454-1 ; То же [Электронный ресурс]. URL: http://biblioclub.ru/index.php?page=book&id=241108 (04.02.2019).
- 3. Кравчук Д. А., Снесарев С. С. Методическое пособие по электротехнике.

Издательство: Издательство Южного федерального университета, 2016

4. Рекус, Г.Г. Основы электротехники и электроники в задачах с решениями : учебное пособие / Г.Г. Рекус. - Москва : Директ-Медиа, 2014. - 344 с. - ISBN 978-5-4458-5752-5 ; То же [Электронный ресурс]. -

URL: http://biblioclub.ru/index.php?page=book&id=233698 (04.02.2019).

Дополнительная литература:

1. Электроника: учебник. Автор: Федоров С. В., Бондарев А. В.

Дисциплина: Электротехника Энергетика Электротехника и электроника

Оренбург: <u>ОГУ</u>, 2015г. Объем: 218 стр. ISBN: 978-5-7410-1368-7. УДК: 621.31(075.8)

ББК: 31.2я73; То же [Электронный ресурс]. -

URL: http://biblioclub.ru/index.php?page=book&id=438991(04.02.2019).

5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины

- 1. Электротехника: метод. указания и контрольные задания для студ.-заоч. инж.-техн. (неэлектротехн.) вузов. м.: высш. шк., 1987. 119с.: ил. 20к. Кравчук Д. А., Снесарев С. С.Издательство: Издательство Южного федерального университета, 2016
- 2. Windows 8 Russian. Windows Professional 8 Russian Upgrade. Договор № 104 от 17.06.2013 г. Лицензии бессрочные
- 3. MicrosoftOfficeStandard 2013 Russian. Договор № 114 от 12.11.2014 г. Лицензии бессрочные.
- 4. Система централизованного тестирования БашГУ (Moodle). GNU General Public License.

6.Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Наименование спе-							
		Наименование оборудования, программного					
циализированных	Вид занятий						
аудиторий, кабине-		обеспечения					
тов, лабораторий							
1. Учебная аудитория	Лекции	Аудитория № 301					
для проведения занятий		Доска, мел, парты, стулья.					
лекционного типа:		Аудитория № 302					
аудитория №301		Учебная мебель, учебно-наглядные пособия, доска,					
(учебный корпус, адрес		проектор Nec M361X(M361XG) LCD 3600Lm					
ул. Мингажева, д. 100)		XGA(1024x768) 3000:1, экран ScreenMedia Economy-P 1:1					
		180x180c.					
2. Учебная аудитория	C	Аудитория № 209					
для проведения занятий	Семинары,	.Компьютерное кресло(5 шт), Высокотемпературная					
семинарского типа:	практические	камерная печь СНОЛ 12/16(2шт), Измеритель					
аудитория №302	занятия	теплопроводности ИТП-МГ4 "100", Монитор 17" LG					
(учебный корпус, адрес	групповые и	L1718S-SN Silver (1280*1024)(3 шт), .МФУ №1 Kyocera FS-					
ул. Мингажева, д. 100),	индивидуальные	1035MFP/DP, Персональный компьютер в комплекте					
аудитория №209,	занятия	Моноблок iRU 502 21.5"(2 шт), Персональный компьютер					
Научная лаборатория для		Моноблок баребон ECS G11-21ENS6B 21.5					
проведения		G870/2GDDR31333/320G SATA/DVD+RW, Проектор					
лабораторных и научно-		Optoma EX542i.DLP3D.XGA(1024*768).2700 ANSI					
исследовательских работ		Lm.3000 1.Lamp5000+/-40 ver, Системный блок ПК 775					
(учебный корпус, адрес		AMD, Athlon 64 3500+/Gigabyte Soc-939 GA- K8N-SLI					
ул. Мингажева, д. 100)		UDMA 133/512 MBx4/256 mb/250					
ул. түттижеви, д. 100)		Gb/DVD+-R/RW/Asus/.клавиатура,мышь, Системный блок					
3. Учебная аудитория	F	IIK 775 AMD Celeron- D 326 2.53 G/Asus P5PE-VW Soc-775					
для проведения	Групповые и	I865g/DDR 512/DVD+-R/RW/ATX/. клавиатура, мышь, Сканер Epson Perfection V37, Стол письменный					
групповых и	индивидуальные	1300*650*730(5шт), Тумба выкатная 424*435*616 3					
индивидуальных	занятия	ящика(5 шт), Тумба приставная 420*650*750(2 шт), .Шкаф					
консультаций:		для документов 2100*800*400(5 шт), Шкаф для одежды					
аудитория №301		2100*800*500, Калькулятор Citizen SDC-444S аналог 888					
(учебный корпус, адрес		Стул "Аскона" ткань черная, Подставка под системный					
ул. Мингажева, д. 100)		блок 270*502*415					
ул. түттижеви, д. 100)		Аудитория № 2 (201)					
4. Учебная аудитория	Текущий	PentiumG2130/4Г6/500Г6/21,5"/Кл/мышь -5 шт. ПК в					
для текущего контроля	контроль и	компл. Фермо Intel. Фермо Intel Моноблок №1 Фермо AMD					
и промежуточной	промежуточная	А8-5500 – 5 шт.					
аттестации: аудитория	аттестация	Лабораторные стенды производства ЧелГУ:1.					
№301 (учебный корпус,	аттестация	Электрические цепи; 2. Электроника; 3.					
адрес ул. Мингажева, д.		Электропривод.					
100)		Приборы и оборудование: 1. Счетчики					
- ~ · /		электрической энергии; 2. Автотрансформаторы					
5.Помещения для		и трансформаторы. Стабилизатор напряжения.					
самостоятельной	Самостоятельная	Электротехнические конденсаторы.					
<i>работы:</i> аудитория №2	работа	Изм5рительные приборы.					
(201) (физмат корпус –		1. Windows 8 Russian. Windows Professional 8					
учебное, адрес 3.							
Валиди, д. 32)		Russian Upgrade. Договор № 104 от 17.06.2013 г.					
		Лицензии бессрочные					
		2. MicrosoftOfficeStandard 2013 Russian. Договор					
		<u> </u>					
		3. Система централизованного тестирования					
		БашГУ (Moodle). GNU General Public License.					
		№ 114 от 12.11.2014 г. Лицензии бессрочные. 3. Система централизованного тестирования					

МИНОБРНАУКИ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ИНЖЕНЕРНЫЙ ФАКУЛЬТЕТ

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины Б1. Б.14 « Электротехника и Электроника» на 7, 8 семестр Заочная форма обучения

Вид работы	Объем дисциплины
Общая трудоемкость дисциплины (ЗЕТ / часов)	6/216
Учебных часов на контактную работу с преподавателем:	36,4
лекций	16
практических/ семинарских	10
лабораторных	8
других (групповая, индивидуальная консультация и иные виды	
учебной деятельности, предусматривающие работу обучающихся с	
преподавателем) (ФКР)	2,4
Учебных часов на самостоятельную работу обучающихся (СР)	167
Учебных часов на подготовку к	
экзамену/зачету/дифференцированному зачету Контрольная работа.	13

Форма(ы) контроля:

Зачет 7 семестр Экзамен 8 семестр

№ п/п	Тема и содержание	лекции, по семпо лабо самос	изучения мапрактически нарские за раторные раторные раторные раторные магельная оемкость (в	ие заня нятия, работы, работа	тия, и	Основная и дополнител ьная литература, рекомендуе мая студентам (номера из списка)	Задания по самостоятель ной работе студентов	Форма текущего контроля успеваемости (коллоквиумы, контрольные работы, компьютерны е тесты и т.п.)
1	2	3	4	5	6	7	8	9
1.Введение	Цели, объект и предмет курса Электротехника и электроника. Вклад российских ученых в становление отраслей электротехники и электроники	2				[1] CTp.6-11.	Изучить по интернет ресурсам биографии В.В. Петрова, М.О. Доливо — Добровольско го, А.С Попова.	Проверка СР правильности названий «Дуга Петрова». Двигатель Доливо — Добровольско го, Радио Попова.
2.Нагрузочные Характеристики источников и нагрузок	Состав и функции электрических и электронных цепей. Режимы работы электрических и электронных цепей. Нагрузочные характеристики и их значения.	2	2	2		[1] Стр.26- 39 [1] Стр.101- 139	Решить задачи, предложенные в лабораторной работе 1	Отчет по лабораторны м работам. Контроль СРС
3.Законы Кирхгофа в различных режимах работы электрической цепи	Первый и второй законы Кирхгофа электрической цепи в стационарном режиме, в квази стационарном режиме, в импульсном и переходном	2	4	4		[1] Стр.59-65 [1] Стр.139-165 [1]	Достроить векторные диаграммы, используя результаты	Отчет по лабораторны м работам. Контроль СРС.

	режимах, в высокочастотном режиме. Методы расчета линейных и нелинейных электрических цепей.				Стр.170-176 [1] Стр.176-190 [1] Стр.213-265 [1] Стр.292-305	выполнения лабораторных работ№2 и №3, используя правила построения векторных диаграмм и законы Кирхгофа	
4.Законы магнитной цепи. Взаимодействие тока и магнитного поля	Закон Фарадея, Закон Эрстеда. Магнитное сопротивление. Электроизмерительные приборы магнито электрического принципа действия, электромагнитного, магнитно динамического.	2	2		[1] Стр.336-365 [1] Стр.588-595	Предложить изменение параметров трансформато ра, исследуемого во время лабораторных испытаний, в целях повышения КПД	Отчет по лабораторны м работам. Контроль СРС.
5. Рассчеты трехфазных цепей	Соединение звездой, Соединение треугольником	4	4	4	[1] CTp.365-385.	Расчитать максимальну ю мощность трехфазного нагревателя с учетом сопротивлени я линии.	Отчет по лабораторны м работам. Контроль СРС.
6.Резонанс напряжений	Резонанс напряжений и его	2	2	4	[1] Стр.390-		Отчет по

	практическое значение. Резонанс токов и его практическое значение.					405		лабораторны м работам. Контроль СРС.
7.Переходные режимы	R-C и L-C сглаживающие фильтры. Режим коммутации	2	2	2		[1] CTp.428- 465		Отчет по лабораторны м работам. Контроль СРС.
8.Расчет нелинейных цепей	Феррорезонансный стабилизатор напряжения	2	2	2		[1] CTp.559- 565	Рассчитать стабилизатор напряжений для заданной нагрузки	. Контроль СРС.
		16	10	8	167			