МИНОБРНАУКИ РОССИИ ФГБОУ ВО «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

УТВЕРЖДЕНО:

на заседании кафедры физической электроники и нанофизики протокол от «4» марта 2022г. № 3

Зав. кафедрой / Т.И. Шарипов

СОГЛАСОВАНО:

Директор физико-технического института

/ И.Ф.Шарафуллин «4» марта 2022г.

УРОВЕНЬ ВЫСШЕГО ОБРАЗОВАНИЯ ПОДГОТОВКА КАДРОВ ВЫСШЕЙ КВАЛИФИКАЦИИ

ПРОГРАММА ПОДГОТОВКИ НАУЧНО-ПЕДАГОГИЧЕСКИХКАДРОВ В АСПИРАНТУРЕ

РАБОЧАЯ ПРОГРАММА ДИСЦИПЛИНЫ (МОДУЛЯ)

Численные методы решения задач в радиофизике и электронике Вариативная часть

Направление подготовки **03.06.01 Физика и астрономия**

Направленность (профиль) подготовки **Физическая электроника**

Подготовка кадров высшей квалификации (аспирантура)

Квалификация Исследователь. Преподаватель-исследователь

Форма обучения очная, заочная

Разработчик:

/ д.хим..н., профессор Доломатов М.Ю.

Дополнения и изменения, внесенные в рабочую программу дисциплины (модуля), приняты на заседании кафедры физической электроники и нанофизики, протокол ~ 3 от ~ 4 марта ~ 2022 г.

Зав. кафедрой

_/ Т.И. Шарипов

Содержание

1. Перечень планируемых результатов обучения по дисциплине,	
соотнесенных с планируемыми результатами освоения ОПОП	3
 Цели и задачи дисциплины 	4
3. Содержание рабочей программы (объем дисциплины, типы и	
виды учебных занятий, учебно-методическое обеспечение	
самостоятельной работы обучающихся)	5
4. Фонд оценочных средств по дисциплине	
4.1. Перечень компетенций с указанием этапов их формирования в	
процессе освоения образовательной программы. Описание	
показателей и критериев оценивания компетенций на различных	
этапах ихформирования, описание шкал оценивания	5
4.2. Типовые контрольные задания или иные материалы, необходимые	
для оценки знаний, умений, навыков и опыта деятельности,	
характеризующих этапы формирования компетенций в процессе	
освоения образовательной программы. Методические материалы,	
определяющие процедуры оценивания знаний, умений, навыков и	
опыта деятельности, характеризующих этапы формирования	
компетенций	8
5. Учебно-методическое и информационное обеспечение	
дисциплины	
5.1. Перечень основной и дополнительной учебной литературы,	
необходимой для освоения дисциплины	12
5.2. Перечень ресурсов информационно-телекоммуникационной сети	
«Интернет» и программного обеспечения, необходимых для освоения	
дисциплины	14
6. Материально-техническая база, необходимая для осуществления	
образовательного процесса по дисциплине	14
Приложение № 1. Содержание рабочей программы (очная форма)	
Приложение № 2. Содержание рабочей программы (заочная форма)	

1. Перечень планируемых результатов обучения по дисциплине, соотнесенных с планируемыми результатами освоения основной профессиональной образовательной программы

(с ориентацией на карты компетенций)

В результате освоения основной профессиональной образовательной программы обучающийся должен овладеть следующими результатами обучения по дисциплине:

ПК-1- способностью к построению корректных математических моделей и численных алгоритмов решения задач радиофизики, электроники, радиотехники, автоматизированных систем регулирования и управления, информационных и коммуникационных технологий

ПК-2- способностью формулировать задачи теоретического и прикладного характера в рамках радиофизики, электроники, радиотехники, автоматизированных систем регулирования и управления, информационных и коммуникационных технологий

ПК-3- готовностью использовать современные информационные технологии, программно-аппаратные средства для проведения научных исследований

	Результаты обучения	Формируемая компетенция (с указанием кода)	Примечание
Знания	Знать основные принципы обработки сигналов	ПК-1,	
	Знать элементы общей теории систем и информационных технологий	ПК-2	
	Знать принципы решения научно- технических и инженерных задач на ЭВМ	ПК-3	
Умения	Уметь осуществлять оценку основных параметров работы вычислительных устройств	ПК-1	
	Уметь анализировать динамические системы	ПК-2	
	Уметь выполнять расчеты с применением языков программирования высокого уровня	ПК-3	
Владения (навыки / опыт деятельности)	Владеть основными понятиями, связанными с теорией сложных систем и их моделированием на ЭВМ	ПК-1	
	Владеть методами обработки сигналов и данных физических экспериментов	ПК-2	

Владеть		основами	ПК-3	
программирования	для	решения		
научно-технических	задач			

2. Цели и задачи дисциплины

Дисциплина «Численные методы решения задач в радиофизике и электронике» относится к вариативной части. Дисциплина изучается на 3 курсе в 6 семестре на очной форме обучения и на 2 и 3 курсах в 5 и 6 семестрах на заочной форме обучения.

Дисциплина относится к разделу Блок 1. Вариативная Дисциплина по выбору «Численные методы решения задач в радиофизике и образовательную электронике» включена основную программу послевузовского профессионального образования. Изучение курса содержательно и логически соотносится с курсами, изучаемыми бакалавриате и магистратуре при изучении дисциплин: "Физические основы "Основы радиоэлектроники", "Компьютерные наноэлектроники", технологии", Моделирование в наноматериалах". Курс «Численные методы решения задач в радиофизике и электронике» является важным при выполнения кандидатской диссертации.

Знания, умения и навыки, полученные аспирантами при изучении данного курса, необходимы при подготовке и написании диссертации по специальности 01.04.04 «Физическая электроника»

Целью освоения дисциплины «Численные методы в радиофизике» являются формирование у аспирантов современных научных представлений анализиза данных радиофизических экспериментов и современного математического моделирования сложных физических систем.

В результате изучения дисциплины у аспирантов должны сформироваться знания, навыки и умения, позволяющие самостоятельно

применять различные методы численного решения задач в области радиофизики и физической электроники в ходе научного исследования.

В результате аспирант приобретает умение ориентироваться в современных компьютерных технологий обработки данных и моделирования физических явлений в радиофизике и физической электроники.

.

3. Содержание рабочей программы (объем дисциплины, типы и виды учебных занятий, учебно-методическое обеспечение самостоятельной работы обучающихся)

Содержание рабочей программы по очной форме представлено в Приложении № 1.

Содержание рабочей программы по заочной форме представлено в Приложении № 2.

4. Фонд оценочных средств по дисциплине

4.1. Перечень компетенций с указанием этапов их формирования в процессе освоения основной профессиональной образовательной программы.

Описание показателей и критериев оценивания компетенций на различных этапах их формирования, описание шкал оценивания

Код и формулировка компетенции:

 Π K-1 — способностью к построению корректных математических моделей и численных алгоритмов решения задач радиофизики, электроники, радиотехники, автоматизированных систем регулирования и управления, информационных и коммуникационных технологий

Этап	Планируемые результаты	Критерии оценивания ј	результатов обучения
(уровень)	обучения		
освоения	(показатели достижения	«Не зачтено»	«Зачтено»
компетен	заданного уровня освоения	«He зачтено»	«Зачтено»
ции	компетенций)		
Первый		Отрывочные или	Систематические
этап	Знать основы кибернетики, как	неполные знания в	знания в области
(уровень)	базу вычислительной техники и	области кибернетики,	кибернетики,
	информационных технологий;	вычислительной	вычислительной
	основные термины и	техники и	техники и

	определения кибернетики;	информационных	информационных
	Знать кибернетические основы	технологий.	технологий.
	моделирования объектов	10/MIO/IOI IIII.	Temionorini.
	природы и техники; математическое и		
	имитационное моделирование		
	Знать особенности		
	моделирования сложных		
	систем; основы общей теории		
	систем.		
Второй	Уметь применять	Отрывочные или	Сформированы
этап	алгебраические и	неполные умения	умения применять
(уровень)	дифференциальные уравнения	применять	алгебраические и
	для описания статических,	алгебраические и	дифференциальные
	динамических и	дифференциальные	уравнения для
	стохастических системы. Уметь	уравнения для	описания
	применять теоремы Эшби,	описания	статических,
	Геделя для моделирования	статических,	динамических и
	сложных систем.	динамических и	стохастических
		стохастических	системы
		системы	
Третий	Владеть особенностями	Отсутствуют навыки	Успешное владение
этап	моделирования сложных	моделирования	навыками
(уровень)	систем.	сложных систем и	моделирования
	Владеть численными методы	навыки владения	сложных систем и
	решения систем линейных и	численными методы	навыками владения
	нелинейных алгебраических	решения систем	численными методы
	уравнений.	линейных и	решения систем
		нелинейных	линейных и
		алгебраических	нелинейных
		уравнений.	алгебраических
		J.F	уравнений.
			J P 3DII 3

ПК-2 – способностью формулировать задачи теоретического и прикладного характера в рамках радиофизики, электроники, радиотехники, автоматизированных систем регулирования и управления, информационных и коммуникационных технологий

Этап	Планируемые	Критерии оценивания	и результатов обучения
(уровень	результаты		
)	обучения		
освоени	(показатели		
Я	достижения		
компете	заданного	«Не зачтено»	«Зачтено»
нции	уровня		
	освоения		
	компетенций)		
Первый	Знать элементы	Имеет фрагментарные	Достаточно уверено знает
этап	общей теории	знания профессиональной	профессиональную лексику,
	систем и	лексики, не готов к участию	быть готовым к участию в
	информационн	в дискуссии на	дискуссии на
	ых технологий,	профессиональные темы.	профессиональные темы;

Второй этап	недостатки и возможности компьютерного эксперимента Уметь аналировать современные отечественные и зарубежные литературные источниками. Уметь анализировать проблемы, возникающих при обработке сигналов	Уверенно проводит информационно-поисковую работу, но не умеет адекватно отбирать данные для решения профессиональных задач	знать основы делового общения, принципы и методы организации деловой коммуникации на русском и иностранном языках. Уверенно проводит информационно-поисковую работу и выбор данных для решения профессиональных задач
Третий этап	Владеть методами слепого поиска процессов измерений и наблюдений.	Не способен работать с различными источниками информации; применения современных инструментальных средств для проведения информационно-поисковой работы с последующим внедрением данных для решения поставленных задач	Владеет навыками работы с различными источниками информации; применения современных инструментальных средств для проведения информационно-поисковой работы с последующим внедрением данных для решения поставленных задач

ПК-3 – готовностью использовать современные информационные технологии, программно-аппаратные средства для проведения научных исследований

Этап	Планируемые результаты	Критерии оценивания	результатов обучения
(уровень	обучения (показатели		
)	достижения заданного		
освоени	уровня освоения	«Не зачтено»	«Зачтено»
Я	компетенций)		«Эачгено»
компете			
нции			
Первый		Имеет фрагментарные	Достаточно уверено
этап	Знать принципы решения	знания	знает профессиональную
	научно-технических и	профессиональной	лексику, быть готовым к
	инженерных задач на	лексики, не готов к	участию в дискуссии на
	ЭВМ.	участию в дискуссии	профессиональные темы;
	Знать общие требования к	на профессиональные	знать основы делового
	моделям в физике и	темы;	общения, принципы и
	технике.		методы организации
			деловой коммуникации
			на русском и
			иностранном языках.

Второй этап	Уметь выполнять расчеты с применением языков программирования высокого уровня. Уметь проводить анализ особых точек дифференциальных уравнений. Уметь строить фазовые портреты дифференциальных уравнений.	Не умеет выполнять расчеты с применением языков программирования высокого уровня	Уверенно проводит расчеты с применением языков программирования высокого уровня
Третий этап	Владеть методами численной интерполяции результатов и измерений: интерполяция по Ньютону и Лагранжу. Владеть методами Рунге-Кутта Эйлера в расчете дифференциальных моделей.	Не способен работать с различными источниками информации; применения современных инструментальных средств для проведения информационнопоисковой работы с последующим внедрением данных для решения поставленных задач	Владеет навыками работы с различными источниками информации; применения современных инструментальных средств для проведения информационнопоисковой работы с последующим внедрением данных для решения поставленных задач

4.2. Типовые контрольные задания или иные материалы, необходимые для оценки знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций в процессе освоения основной профессиональной образовательной программы. Методические материалы, определяющие процедуры оценивания знаний, умений, навыков и опыта деятельности, характеризующих этапы формирования компетенций

Этапы	Результаты обучения	Компетенция	Оценочные
освоения			средства
1-й этап	Знать элементы общей теории систем и	ПК-2	Индивидуаль
	информационных технологий, недостатки и		ная беседа по
Знания	возможности компьютерного эксперимента		заданию для
	Знать основы кибернетики, как базу вычислительной техники и ИТ; основные термины и определения кибернетики; кибернетические основы моделирования объектов природы и техники;	ПК-1	самостоятель ной работы, зачет

		1	
	математическое и имитационное моделирование; особенности моделирования сложных систем;		
	основы общей теории систем		
	Знать принципы решения научно-технических и инженерных задач на ЭВМ; общие требования к моделям в физике и технике.	ПК-3	
2-й этап	*	ПК-2	Индивидуаль
2-и этап	Уметь аналировать современные отечественные	11K-2	
	и зарубежные литературные источниками;		ная беседа по
Умения	анализировать проблемы, возникающих при		заданию для
	обработке сигналов		самостоятель
	Уметь применять алгебраические и	ПК-1	ной работы,
	дифференциальные уравнения для описания		зачет
	статических, динамических и стохастических		
	системы; применять теоремы Эшби, Геделя		
	для моделирования сложных систем.		
	Уметь выполнять расчеты с применением	ПК-3	
	1	11K-3	
	языков программирования высокого уровня;		
	проводить анализ особых точек		
	дифференциальных уравнений; строить		
	фазовые портреты дифференциальных		
	уравнений.		
3-й этап	Владеть методами слепого поиска процессов	ПК-2	Индивидуаль
	измерений и наблюдений		ная беседа по
Владеть	Владеть особенностями моделирования сложных	ПК-1	заданию для
навыками	систем.		самостоятель
110000111011111	Владеть численными методы решения систем		ной работы,
	линейных и нелинейных алгебраических		*
	уравнений.		зачет
	Владеть методами численной интерполяции	ПК-3	
	результатов и измерений:		
	интерполяция по Ньютону и Лагранжу; методами		
	Рунге-Кутта Эйлера в расчете дифференциальных		
	моделей.		
	моделеи.		

В качестве основного оценочного средства текущего контроля используются индивидуальная проверка заданий по самостоятельной работе, дискуссии на лекционном и практических занятиях по прочитанной литературе. Промежуточная аттестация по итогам освоения дисциплины — письменная контрольная работа. Аттестация по итогам освоения дисциплины — зачет.

Вопросы для проведения зачета

- 1. Кибернетика, как база вычислительной техники и ИТ Основные термины и определения кибернетики
- 2. Кибернетические основы моделирования объектов природы и техники

- 3. Математическое и имитационное моделирование
- 4. Особенности моделирования сложных систем.
- 5. Основы общей теории систем. Системность как свойства материи. Определение системы по Берталанфи.
- 6. Простые и сложные системы. подсистемы и надсистемы. теория множеств как естественный аппарат моделирования систем.
- 7. Динамические и статические системы. Принцип временного соответствия. Детерминированные и стохастические системы.
- 8. Принцип эмерджентности и интерэктности. Особенности алгебраических и дифференциальных уравнений, описывающих статические, динамические и стохастические системы.
- 9. Теорема Эшби.
- 10. Теорема Геделя и ее следствия для моделирования сложных систем.
- 11. Прямые и обратные связи в системах управления. Положительная и отрицательная обратная связь в системах управления.
- 12. Интерполяция и экстраполяция в радиофизике.
- 13. Численные методы решения систем линейных и нелинейных алгебраических уравнений.
- 14. Метод Гаусса. Метод Ньютона- Рафсона.
- 15. Общие требования к моделям в физике и технике.
- 16. Методы численной интерполяции результатов и измерений.
- 17. Интерполяция по Ньютону и Лагранжу.
- 18. Методы Рунге-Кутта Эйлера в расчете дифференциальных моделей.
- 19. Численное дифференцирование и интегрирование.
- 20. Разностные схемы.
- 21. Анализ особых точек дифференциальных уравнений. Фазовые портреты дифференциальных уравнений
- 22. Экстраполяция и интерполяция с помощью полиномов Теорема Веерштрасса.
- 23. Численное решение уравнений в частных производных Понятие о функции многих переменных, общие понятия, Экстремум функций многих переменных, необходимый признак экстремума, достаточный признак экстремума функции многих переменных.
- 24. Градиент.
- 25. Матрица Якоби.
- 26. Матрица Гесса.
- 27. Метод Давидона-Флетчера Пауэла
- 28. Метод градиентов и наискорейшего спуска.
- 29. Ошибки математического моделирования и прогнозов на основе моделей.
- 30. Функция отклика. Гиперповерхности функции отклика. Линии уровня.
- 31. Понятия о локальном и глобальном экстремуме. Правила нахождения экстремумов численными методами.

- 32. Поиск оптимума от одной переменной. Понятие об адекватности модели.
- 33. Решение задачи многомерного поиска экстремума. Множественная регрессионная модель. Оптимизация множественной регрессионной модели $Y = F(x_1, x_2, x_n)$. Шаговая оптимизация.
- 34. Градиентные методы оптимизации. Метод слепого поиска процессов измерений и наблюдений. Недостатки и возможности компьютерного эксперимента

Задания для самостоятельной работы

Задание №1

Задание: применение пакета Maple для решения инженерных и физических задач.

1. Для молекулы азота постр $_2$ оить 3du 2dзависимости функции распределения Максвелла $4\pi ({}^{m0})^{3/2} 9^{2} e^{-m_0 \vartheta /(2kT)}$ от скорости ϑ и температуры T, где $k-2\pi kT$

постоянная Больцмана (1,38· 10^{23} Дж/К), m_0 – масса молекулы.

- 2. Определить экстремумы функции по температуре.
- 3. Среднее значение функции по температуре.
- 4. Определить производные функции по температуре.

Описание методики оценивания

Задание выполнено: в случае верного выполнения работы, наличия полного отчёта

Задание **не выполнено**: получены нереальные значения расчетных параметров. Отсутствует подробный отчет с решениями.

Залание № 2

Задание: Стандартным методом наименьших квадратов в средах МАРLE и EXCEL исследовать неочевидную линейную и нелинейную связь полученных из эксперимента значений относительной механической прочности и относительного электросопротивления композиционного материала по данным таблицы. Методом интерполяции по Лагранжу увеличить число точек в столбцах до 15-20. Составить программу и построить графики экспериментальных и расчетных значений функций. Оценить погрешность расчетов.

|--|

образца	Отн.	Отн
	электросопроти	прочность
	вление	
1	122	340
2	56	161
3	78	240
4	143	339
5	154	450
6	78	221
7	98	286
8	87	302
9	33	112
10	14	52
Искомая	Y=ax+b	
Зависимость		

Описание методики оценивания

Задание выполнено: в случае верного выполнения работы, наличия полного отчёта

Задание **не выполнено**: получены нереальные значения расчетных параметров. Отсутствует подробный отчет с решениями.

5. Учебно-методическое и информационное обеспечение дисциплины 5.1. Основная литература:

- 1. Спицнадель В.Н.Основы системного анализа: Учебное пособие.- СПб: Изд. Дом бизнес-пресса, 2000 г. 326c URL: http://www.library.fa.ru/files/Spitsnadel.pdf
- 2. Бахвалов Н.С., Жидков Н.П., Кобельков Г.М. Численные методы. М.: Бином. лаборатория знаний, 2008.-640с. URL:http://elibrary.bsu.az/kitablar/1012.pdf
- 3. Рено Н.Н. Алгоритмы численных методов. М.: КДУ, 2007.-24с.

Дополнительная литература:

1. Колдаев В.Д. Численные методы и программирование. — М.: Форум. Инфра-М, 2008.-336с.

URL: https://portal23.sibadi.org/pluginfile.php/8536/mod_resource/content/1/Koldaev_CHislennye_metody.pdf

- 2. Ашманов С.А., Тимохов А.В. Теория оптимизации в задачах и упражнениях.- М.: Наука. Гл. ред. Физ.-мат. Лит. , 1991. URL: http://cmcstuff.esyr.org/el-net-
- 20111113/7th%20Semestre/2%D0%B9%20%D0%BF%D0%BE%D1%82%D0%BE%D0%BA/%5B413%5D%20%D0%94%D0%BC%D0%B8%D1%82%D1%80%D1%83%D0%BA/Ashmanov,%20Timohov.%20Teoriya_optimizacii_v_zadach_a h.pdf
- 3. Легова Т.А. Методы оптимизации в примерах и задачах. М.: Высшая школа, 2008.-544c.
- $URL: \underline{http://znakka4estva.ru/uploads/category_items/\%D0\%9C\%D0\%B5\%D1\%82\%D0}$
- %BE%D0%B4%D1%8B%20%D0%BE%D0%BF%D1%82%D0%B8%D0%BC%D0 %B8%D0%B7%D0%B0%D1%86%D0%B8%D0%B8%20%D0%B2%20%D0 %BF%D1%80%D0%B8%D0%BC%D0%B5%D1%80%D0%B0%D1%85%20%D0% B8%20%D0%B7%D0%B0%D0%B4%D0%B0%D1%87%D0
- 4. Успенский В. А. <u>Теорема Гёделя о неполноте.</u> <u>«Популярные лекции по математике»</u> М.: «Наука», 1982 г., 110 стр. URL: http://www.vixri.ru/d/Uspenskij%20V.A.%20%20_Teorema%20Gedelja%20o%2 <u>Onepolnote.pdf</u>
- 5. Хакен Г. Синергетика. М.: Мир, 1985. 419 с. URL: http://booksshare.net/books/physics/haken-g/1985/files/sinergetikaierarhiineustoychivostey1985.pdf
- 6. Николис. Дж. Динамика иерархических систем. Эволюционное представление. М.: Мир, 1989. 488 с. URL: https://high-way.ucoz.ru/_ld/0/36_pdf
- 7. Николис Г., Пригожин И. Самоорганизация в неравновесных системах. М.: Мир, 1979. 512 с. URL: https://www.twirpx.com/file/2179360/
- 8. Федер Е. Фракталы. М.: Мир, 1991.— 254 с. URL: <a href="http://inis.jinr.ru/sl/vol2/physics/% D0% 94% D0% B8% D0% BD% D0% B0% D0% B C% D0% B8% D1% 87% D0% B5% D1% 81% D0% BA% D0% B8% D0% B 5% 20% D1
- <u>%81%D0%B8%D1%81%D1%82%D0%B5%D0%BC%D1%8B%20%D0%B8%2</u> <u>0%D0%A5%D0%B0%D0%BE%D1%81/%D0%A4%D0%B5%D0%B4%D0%B5</u> %D1%80%20%D0%95.,%20%D0%A4%D1%80%D0%B0%D0%
- 9. Колесниченко, А. В., М. Я. Маров Турбулентность и самоорганизация. Проблемы моделирования космических и природных сред [Электронный ресурс. М.: БИНОМ. Лаборатория знаний, 2012. 632 с.
- URL: https://techlibrary.ru/b/2s1p1m1f1s1o1j1y1f1o111p_2h.2j., 2u1a1r1p1
c_2u.3n._3a 1u1r1b1u1m1f1o1t1o1p1s1t2d_1j_1s1a1n1p1p1r1d1a1o1j1i1a1x1j2g.
_2009.pdf

5.2. Перечень ресурсов информационно-телекоммуникационной сети «Интернет» и программного обеспечения, необходимых для освоения дисциплины

- 1. Электронная библиотечная система «ЭБ БашГУ» https://elib.bashedu.ru//
- 2. Электронная библиотечная система издательства «Лань» https://e.lanbook.com/
- 3. Электронная библиотечная система «Университетская библиотека онлайн» https://biblioclub.ru/
- 4. Научная электронная библиотека elibrary.ru (доступ к электронным научным журналам) https://elibrary.ru/projects/subscription/rus_titles_open.asp
- 5. Электронный каталог Библиотеки БашГУ http://www.bashlib.ru/catalogi/
- 6. Электронная библиотека диссертаций РГБ -http://diss.rsl.ru/
- 7. Государственная публичная научно-техническая библиотека России. База данных международных индексов научного цитирования SCOPUS http://www.gpntb.ru.
- 8. Государственная публичная научно-техническая библиотека России. База данных международных индексов научного цитирования WebofScience http://www.gpntb.ru
- 9. Электронная база OnePetro публикаций Общества инженеров нефтяников SPE- http://www.spe.com

6.Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине

Материально-техническая база, необходимая для осуществления образовательного процесса по дисциплине приведена в таблице:

Наименование специальных помещений и помещений для самостоятельной работы	Оснащенность специальных помещений и помещений для самостоятельной работы	Перечень лицензионного программного обеспечения.
1. учебная аудитория для	Лаборатория № 313 (Лаборатория	1. Windows 8 Russian; Windows
проведения занятий	«Радиопрактикум»)	Professional 8 Russian Upgrade.
лекционного типа:	 Генератор ГЗ – 118, 2 шт. 	Договор №104 от 17.06.2013 г.
лаборатория № 313	2. Интерактивная доска Hitachi Star	Лицензия - OLPNL Academic
(Лаборатория	Board FX-82 WL (HT-FX-82WL) - 1	Edition. Срок лицензии -
«Радиопрактикум»)	шт.	бессрочно.
(физмат корпус –	3. Мультимедиа проектор АсегР 1203.	•

учебное).

- 2. учебная аудитория для проведения занятий семинарского типа: лаборатория «Радиопрактикум») (физмат корпус учебное).
- 3. учебная аудитория для проведения групповых и индивидуальных консультаций: лаборатория № 313 (Лаборатория «Радиопрактикум») (физмат корпус учебное).
- 4. учебная аудитория для текущего контроля и промежуточной аттестации:
 лаборатория № 313 (Лаборатория «Радиопрактикум») (физмат корпус учебное).
- 5. помещения для самостоятельной работы: читальный зал № 2 (физмат корпус учебное).
- 6.
 помещения хранения и профилактического
 и профилактического

 обслуживания учебного оборудования:
 лаборатория № 605 г (физмат корпус учебное).

- 4. Персональный компьютер в комплекте Моноблок iRU 502 21.5", 3 шт.
- 5. Системный блок HP Pavilion Simline S3500F AMD Athlon 64 X2 5400+/2/8 GHz, 4Gb, 500Gb, Wi-Fi (IEEE 802.11g), NVIDIA GeForce 6150 SE (кл-ра, мышь).
- 6. Телевизор LED 42" (106 см) LG 45 LM3400 (3D, FHD, 1980*1080, USB).
- 7. Флипчарт/ доска белая/ 60*90.
- 8. Кронштейн HOLDERPFS-4015 20-65, до 90 кг. до стены 28 мм.
- 9. Прибор Щ 4313, 2 шт.
- 10. Стенд универсальный «ОАВТ».
- 11. Монитор 17" LG Flatron L1750U-SN.
- 12. Монитор 15" Samsung 510.
- 13. Монитор 17" Philips 170 S6FB (LCD, 1280-1024+DVI).
- 14. Монитор 19" Samsung 920N (KSZ), (LCD, TFT, 1280*1024-75Hz, 700:1,8 ms, 160/160, 250кд/м) TCO"99
- 15. Осциллограф C1-68, C1-93, C1-93ОСУ-10.

Читальный зал № 2

- 1. Научный и учебный фонд.
- 2. Научная периодика.
- 3. ПК (моноблок) 3 шт.
- 4. Wi-Fiдоступ для мобильных устройств.
- 5. Неограниченный доступ к ЭБС и БД.
- 6. Количество посадочных мест 58.
- 7. ПК (моноблок) -8 шт., подключенных к сети Интернет.

Лаборатория № 605 г

- 1. Станок токарный ТВ-16;
- 2. Станок сверлильный НС-Ш;
- 3. Осциллограф С1-67;
- 4. Паяльная аппаратура;
- 5. Весы аналитические Labof;
- 6. Весы лабораторные;
- 7. Шкаф с набором вспомогательного материала (резисторов, конденсаторов, предохранителей и т. д.)
- 8. Набор инструментов для ремонта оборудования.

- 2. Microsoft Office Standard 2013 Russian. Договор №114 от 12.11.2014 г. Лицензия-OLPNL Academic Edition. Срок лицензии бессрочно.
- 3. «Права на программы для ЭВМ Office Standart 2013 Russian OLP NL Academic Edition», гражданскоправовой договор № 114 от 12 ноября 2014 г. Срок лицензии бессрочно.
- 4. Учебный Комплект Компас-3DV13. Проектирование и конструирование в машиностроении. Договор № 263 от 07.12.2012 г. Срок лицензии – бессрочно. (313)

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины «Численные методы решения задач в радиофизике и электронике»

<u>6</u> семестр

Очная форма обучения

Вид работы	Объем
	дисциплины
Общая трудоемкость дисциплины (ЗЕТ / часов)	2/72
Учебных часов на контактную работу с преподавателем:	8
лекций	2
практических	4
Контроль самостоятельной работы (КСР)	2
Учебных часов на самостоятельную работу обучающихся	
(CPC)	
	64
Учебных часов на подготовку к экзамену/зачету/	
дифференцированному зачету (контроль)	-

Формы

контроля:За

№ п/п	Тема и содержание		Форма изучения материалов: лекции, практические занятия, семинарские занятия, лабораторные работы, самостоятельная работа и трудоемкость (в часах)			Задания по самостоятель ной работе	Форма текущего контроля успеваемости (коллоквиум ы,
1.0 1.1		лк	ПР/СЕМ	СРС	ая аспирантам (номера из списка)	аспирантов	контрольные работы, компьютерн ые тесты и т.п.)
1	2	3	4	5	6	7	8
1.	Модуль 1: Основные алгоритмы и приемы математического моделирование явлений в радиофизике и электронике с применением численных методов 1. Общие требования к адекватности моделей в радиофизике и электронике. Системный иерархический подход к моделированию явлений. 2. Интерполяция и экстраполяция в радиофизике и электронике. 3. Разностные методы в радиофизике и электронике. 4. Численные методы решения систем линейных и нелинейных алгебраических уравнений. 5. Метод Гаусса. Метод Ньютона- Рафсона. Методы оптимизации в задачах вариационного характера 6. Методы численного разностного решения уравнений Максвелла и Пуассона при различных краевых условиях.	-	2	32	O [1-3] Д [1-8]		индивид. проверка конспектов, дискуссия на лекции, зачет
2.	Модуль 2: Основные численные методы в моделировании детерминированных и	2	2	32	O[4] Д[9]		индивид. проверка

стохастических радиоэлектронных систем					конспектов,
					дискуссия на
Теория динамических детерминированных и					лекции, зачет
стохастических систем в радиофизике и физической					
электронике					
8. Интегральные инварианты Пуанкаре					
9. Расчет траекторий нелинейных осцилляторов и					
нелинейный резонанс в радиофизике.					
10. Фрактальные свойства хаоса					
Решение уравнения Колмогорова -Фоккера-Планка					
11. Хаос в волновых полях . Особые точки,					
аттракторы и бифуркации в радиоэлектронных					
системах					
Всего	2	4	64		

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ БЮДЖЕТНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ «БАШКИРСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ»

СОДЕРЖАНИЕ РАБОЧЕЙ ПРОГРАММЫ

дисциплины «Численные методы решения задач в радиофизике и электронике»

<u>5 и 6</u> семестр

Заочная форма обучения

Вид работы	Объем дисциплины
Общая трудоемкость дисциплины (ЗЕТ / часов)	2/72
Учебных часов на контактную работу с преподавателем:	10
лекций	2
практических	4
Контроль самостоятельной работы (КСР)	4
Учебных часов на самостоятельную работу обучающихся	
(CPC)	58
Учебных часов на подготовку к экзамену/зачету/	
дифференцированному зачету (контроль)	-

Формы

контроля:За

чет

№ п/п	Тема и содержание		Форма изучения материалов: лекции, практические занятия, семинарские занятия, лабораторные работы, самостоятельная работа и трудоемкость (в часах)			Задания по самостоятель ной работе	Форма текущего контроля успеваемости (коллоквиум ы, контрольные
		ЛК	ПР/СЕМ	CPC	ая аспирантам (номера из списка)	аспирантов	работы, компьютерн ые тесты и т.п.)
1	2	3	4	5	6	7	8
1.	Модуль 1: Основные алгоритмы и приемы математического моделирование явлений в радиофизике и электронике с применением численных методов 6. Общие требования к адекватности моделей в радиофизике и электронике. Системный иерархический подход к моделированию явлений. 7. Интерполяция и экстраполяция в радиофизике и электронике. 8. Разностные методы в радиофизике и электронике. 9. Численные методы решения систем линейных и нелинейных алгебраических уравнений. 10. Метод Гаусса. Метод Ньютона- Рафсона. Методы оптимизации в задачах вариационного характера 6. Методы численного разностного решения уравнений Максвелла и Пуассона при различных краевых условиях.	-	2	29	O [1-3] Д [1-8]		индивид. проверка конспектов, дискуссия на лекции, зачет
2.	Модуль 2: Основные численные методы в моделировании детерминированных и	2	2	29	O[3] Д[9]		индивид. проверка

стохастических радиоэлектронных систем					конспектов,
					дискуссия на
Теория динамических детерминированных и					лекции, зачет
стохастических систем в радиофизике и физической					
электронике					
8. Интегральные инварианты Пуанкаре					
9. Расчет траекторий нелинейных осцилляторов и					
нелинейный резонанс в радиофизике.					
10. Фрактальные свойства хаоса					
Решение уравнения Колмогорова -Фоккера-Планка					
11. Хаос в волновых полях . Особые точки,					
аттракторы и бифуркации в радиоэлектронных					
системах					
Всего	2	4	58		